Background & Purpose: Chest X-Ray (CXR) use in pre-MRI safety screening for Lead-Less Implanted Electronic Devices (LLIEDs), easily overlooked or misidentified on a frontal view (often only acquired), is common. Although most LLIED types are "MRI conditional": 1. Some are stringently conditional; 2. Different conditional types have specific patient- or device- management requirements; and 3. Particular types are "MRI unsafe". This work focused on developing CXR interpretation-assisting Artificial Intelligence (AI) methodology with: 1. 100% detection for LLIED presence/location; and 2. High classification in LLIED typing. Materials & Methods: Data-mining (03/1993-02/2021) produced an AI Model Development Population (1,100 patients/4,871 images) creating 4,924 LLIED Region-Of-Interests (ROIs) (with image-quality grading) used in Training, Validation, and Testing. For developing the cascading neural network (detection via Faster R-CNN and classification via Inception V3), "ground-truth" CXR annotation (ROI labeling per LLIED), as well as inference display (as Generated Bounding Boxes (GBBs)), relied on a GPU-based graphical user interface. Results: To achieve 100% LLIED detection, probability threshold reduction to 0.00002 was required by Model 1, resulting in increasing GBBs per LLIED-related ROI. Targeting LLIED-type classification following detection of all LLIEDs, Model 2 multi-classified to reach high-performance while decreasing falsely positive GBBs. Despite 24% suboptimal ROI image quality, classification was correct in 98.9% and AUCs for the 9 LLIED-types were 1.00 for 8 and 0.92 for 1. For all misclassification cases: 1. None involved stringently conditional or unsafe LLIEDs; and 2. Most were attributable to suboptimal images. Conclusion: This project successfully developed a LLIED-related AI methodology supporting: 1. 100% detection; and 2. Typically 100% type classification.
翻译:背景和目的 : 100 个LEX X- Ray (CXR) 用于 IMRI 的高级安全筛选 : 1. 1 100% 的 LLIED 存在/ 位置; 和 2. LLIED 输入的高级分类 : 9 个很容易忽略或错误在前视图(通常只获得) 上发现, 是很常见的 。 虽然大多数 LIIED 类型是“ MRI 有条件的” : 1 个严格条件; 2. 不同的条件类型有特定的病人或设备管理要求; 和 3. 特殊类型是“ MRI 不安全 ” 。 这项工作侧重于开发 CXRIR 解释协助人工智能(AI) 方法, 包括: 1. 100% 检测 LIED 存在/ 位置; 2. 高级分类: 支持 IMILO 进行地面- RALS 升级为 G- IRID 基础, 不断降低 G- Inraldaldald 数据 。