Multimodal learning pipelines have benefited from the success of pretrained language models. However, this comes at the cost of increased model parameters. In this work, we propose Adapted Multimodal BERT (AMB), a BERT-based architecture for multimodal tasks that uses a combination of adapter modules and intermediate fusion layers. The adapter adjusts the pretrained language model for the task at hand, while the fusion layers perform task-specific, layer-wise fusion of audio-visual information with textual BERT representations. During the adaptation process the pre-trained language model parameters remain frozen, allowing for fast, parameter-efficient training. In our ablations we see that this approach leads to efficient models, that can outperform their fine-tuned counterparts and are robust to input noise. Our experiments on sentiment analysis with CMU-MOSEI show that AMB outperforms the current state-of-the-art across metrics, with 3.4% relative reduction in the resulting error and 2.1% relative improvement in 7-class classification accuracy.


翻译:多式学习管道从经过培训的语言模型的成功中获益。然而,这是以增加模型参数为代价的。在这项工作中,我们提议采用适应型多式BERT(AMB),这是一个基于BERT的多式任务结构,使用调适器模块和中间聚变层的组合。适应器为手头的任务调整了经过培训的语言模型,而聚合层则用文字BERT的演示方式进行特定任务、层次和层次的视听信息的融合。在适应过程中,经过培训的语文模型参数仍然冻结,允许快速、有参数效率的培训。在我们的推理中,我们发现这一方法导致高效模型,能够超越经过精细调整的对应方,并能够强有力地输入噪音。我们与CMU-MOSEI的情绪分析实验表明,AMB超越了目前全计量的状态,结果错误相对减少3.4%,7级分类精确度相对提高2.1%。

0
下载
关闭预览

相关内容

BERT进展2019四篇必读论文
专知会员服务
67+阅读 · 2020年1月2日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
1+阅读 · 2023年2月1日
How to Fine-Tune BERT for Text Classification?
Arxiv
13+阅读 · 2019年5月14日
VIP会员
相关VIP内容
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员