Although existing neural network approaches have achieved great success on Chinese spelling correction, there is still room to improve. The model is required to avoid over-correction and to distinguish a correct token from its phonological and visually similar ones. In this paper, we propose an error-guided correction model (EGCM) to improve Chinese spelling correction. By borrowing the powerful ability of BERT, we propose a novel zero-shot error detection method to do a preliminary detection, which guides our model to attend more on the probably wrong tokens in encoding and to avoid modifying the correct tokens in generating. Furthermore, we introduce a new loss function to integrate the error confusion set, which enables our model to distinguish easily misused tokens. Moreover, our model supports highly parallel decoding to meet real application requirements. Experiments are conducted on widely used benchmarks. Our model achieves superior performance against state-of-the-art approaches by a remarkable margin, on both the correction quality and computation speed.
翻译:尽管现有的神经网络方法在中文拼写校正方面取得了巨大成功,但仍有改进的余地。 模型需要避免过度校正,并将正确的符号与其声学和视觉相似的符号区分开来。 在本文中,我们提出了改进中文拼写校正的错误引导校正模型(EGCM ) 。 我们借用BERT的强大能力,提出了一种新颖的零射误差检测方法,以进行初步检测,这指导了我们的模型更多地关注编码中可能错误的符号,并避免在生成中修改正确的符号。 此外,我们引入了一个新的损失函数,以整合错误混淆集,使模型能够区分容易被滥用的符号。 此外,我们的模型支持高度平行的解码以达到真正的应用要求。 实验是在广泛使用的基准上进行的。 我们的模型在校正质量和计算速度上都以显著的差幅取得优的成绩。