Automatic image cropping algorithms aim to recompose images like human-being photographers by generating the cropping boxes with improved composition quality. Cropping box regression approaches learn the beauty of composition from annotated cropping boxes. However, the bias of annotations leads to quasi-trivial recomposing results, which has an obvious tendency to the average location of training samples. The crux of this predicament is that the task is naively treated as a box regression problem, where rare samples might be dominated by normal samples, and the composition patterns of rare samples are not well exploited. Observing that similar composition patterns tend to be shared by the cropping boundaries annotated nearly, we argue to find the beauty of composition from the rare samples by clustering the samples with similar cropping boundary annotations, ie, similar composition patterns. We propose a novel Contrastive Composition Clustering (C2C) to regularize the composition features by contrasting dynamically established similar and dissimilar pairs. In this way, common composition patterns of multiple images can be better summarized, which especially benefits the rare samples and endows our model with better generalizability to render nontrivial results. Extensive experimental results show the superiority of our model compared with prior arts. We also illustrate the philosophy of our design with an interesting analytical visualization.


翻译:自动图像裁剪算法旨在通过生成成份质量更好的作物盒来重新配置像人类摄影师这样的图像。 裁剪盒回归法从附加说明的作物盒中学习成份的美貌。 但是, 说明的偏差导致半三重再组合结果, 这明显倾向于培训样本的平均位置。 这种困境的症结在于, 任务被天真地当作一个盒式回归问题, 即稀有样本可能由正常样本占上风, 稀有样本的构成模式没有得到很好的利用。 观察类似的成份模式往往被近乎注解的作物框所共有, 我们争论的是, 通过将样品与相似的作物边界说明、 类似、 相似的成份模式组合, 从稀有样本中找到成份的美貌。 我们提出一个新的相矛盾的成份组合( C2C), 通过对比动态建立的相似和不相似的两对组合, 来规范成份的成份。 这样就可以更好地总结多种图像的常见成份模式, 特别有利于稀有的样品和最终的模型, 使我们的模型更具有较普通的通用性, 使非令人厌异的结果成为非端。 我们的实验性的哲学的模型也展示了我们之前的视觉的视觉性模型展示。 我们的模型展示了我们之前的视觉的模型的模型的图像的优越性。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年4月6日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员