The prediction of certifiably robust classifiers remains constant around a neighborhood of a point, making them resilient to test-time attacks with a guarantee. In this work, we present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality in achieving high certified robustness. Specifically, we propose a novel bilevel optimization based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers. Unlike other data poisoning attacks that reduce the accuracy of the poisoned models on a small set of target points, our attack reduces the average certified radius of an entire target class in the dataset. Moreover, our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods such as Gaussian data augmentation\cite{cohen2019certified}, MACER\cite{zhai2020macer}, and SmoothAdv\cite{salman2019provably}. To make the attack harder to detect we use clean-label poisoning points with imperceptibly small distortions. The effectiveness of the proposed method is evaluated by poisoning MNIST and CIFAR10 datasets and training deep neural networks using the previously mentioned robust training methods and certifying their robustness using randomized smoothing. For the models trained with these robust training methods our attack points reduce the average certified radius of the target class by more than 30% and are transferable to models with different architectures and models trained with different robust training methods.


翻译:在这项工作中,我们向强健的机器学习模型展示了一种先前不为人知的威胁,这些模型凸显了培训数据质量在实现高认证稳健度方面的重要性。具体地说,我们提议了一种新的双级优化数据中毒袭击,这降低了可验证稳健的分类器的稳健性保障。与其他降低一组目标点上有毒模型准确性的数据中毒袭击不同,我们的攻击降低了数据集中整个目标类中经测试袭击的经认证的平均半径。此外,即使受害者利用高斯数据增强值{cite{cohen2019认证}、MACER\cite{zhai2020macer}和滑动Adv\cite{salman2019可预期}等最可靠的培训方法从头到脚踏实的机器学习模型,我们使用经过精密的清洁标签中毒中毒模型来检测数据。此外,即使受害者用最强的、最精确的、最精确的模型来训练模型,也能够有效地评估我们的拟议方法的有效性。

0
下载
关闭预览

相关内容

专知会员服务
34+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
7+阅读 · 2018年6月8日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Top
微信扫码咨询专知VIP会员