We study the complexity of approximating the partition function $Z_{\mathrm{Ising}}(G; \beta)$ of the Ising model in terms of the relation between the edge interaction $\beta$ and a parameter $\Delta$ which is an upper bound on the maximum degree of the input graph $G$. Following recent trends in both statistical physics and algorithmic research, we allow the edge interaction $\beta$ to be any complex number. Many recent partition function results focus on complex parameters, both because of physical relevance and because of the key role of the complex case in delineating the tractability/intractability phase transition of the approximation problem. In this work we establish both new tractability results and new intractability results. Our tractability results show that $Z_{\mathrm{Ising}}(-; \beta)$ has an FPTAS when $\lvert \beta - 1 \rvert / \lvert \beta + 1 \rvert < \tan(\pi / (4 \Delta - 4))$. The core of the proof is showing that there are no inputs~$G$ that make the partition function $0$ when $\beta$ is in this range. Our result significantly extends the known zero-free region of the Ising model (and hence the known approximation results). Our intractability results show that it is $\mathrm{\#P}$-hard to multiplicatively approximate the norm and to additively approximate the argument of $Z_{\mathrm{Ising}}(-; \beta)$ when $\beta \in \mathbb{C}$ is an algebraic number such that $\beta \not \in \mathbb{R} \cup \{i, -i\}$ and $\lvert \beta - 1\rvert / \lvert \beta + 1 \rvert > 1 / \sqrt{\Delta - 1}$. These are the first results to show intractability of approximating $Z_{\mathrm{Ising}}(-, \beta)$ on bounded degree graphs with complex $\beta$. Moreover, we demonstrate situations in which zeros of the partition function imply hardness of approximation in the Ising model.


翻译:{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\可以\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】流畅Python,766页pdf,中英文版
专知会员服务
224+阅读 · 2020年3月22日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
0+阅读 · 2021年9月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员