We propose a method, based on empirical game theory, for a robot operating as part of a team to choose its role within the team without explicitly communicating with team members, by leveraging its knowledge about the team structure. To do this, we formulate the role assignment problem as a dynamic game, and borrow tools from empirical game-theoretic analysis to analyze such games. Based on this game-theoretic formulation, we propose a distributed controller for each robot to dynamically decide on the best role to take. We demonstrate our method in simulations of a collaborative planar manipulation scenario in which each agent chooses from a set of feedback control policies at each instant. The agents can effectively collaborate without communication to manipulate the object while also avoiding collisions using our method.


翻译:我们根据实证游戏理论,提出一种方法,让作为团队一部分运作的机器人在团队中选择自己的角色,而不与团队成员明确沟通,方法是利用其对团队结构的了解。为此,我们将角色分配问题设计为动态游戏,并借用实证游戏理论分析工具来分析此类游戏。基于这种游戏理论配方,我们建议为每个机器人配置一个分布式控制器,以动态地决定最佳角色。我们在模拟协作计划操纵情景时展示了我们的方法,其中每个代理从每瞬间一组反馈控制政策中选择。代理可以有效协作,无需通信即可操纵对象,同时使用我们的方法避免碰撞。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
1+阅读 · 2021年11月23日
Heuristic-Guided Reinforcement Learning
Arxiv
0+阅读 · 2021年11月22日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年4月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员