Handwritten character recognition is a hot topic for research nowadays. If we can convert a handwritten piece of paper into a text-searchable document using the Optical Character Recognition (OCR) technique, we can easily understand the content and do not need to read the handwritten document. OCR in the English language is very common, but in the Bengali language, it is very hard to find a good quality OCR application. If we can merge machine learning and deep learning with OCR, it could be a huge contribution to this field. Various researchers have proposed a number of strategies for recognizing Bengali handwritten characters. A lot of ML algorithms and deep neural networks were used in their work, but the explanations of their models are not available. In our work, we have used various machine learning algorithms and CNN to recognize handwritten Bengali digits. We have got acceptable accuracy from some ML models, and CNN has given us great testing accuracy. Grad-CAM was used as an XAI method on our CNN model, which gave us insights into the model and helped us detect the origin of interest for recognizing a digit from an image.
翻译:手写字符识别是当今研究的一个热门话题。 如果我们能够使用光学字符识别技术将手写纸片转换成可搜索的文档, 我们很容易理解内容, 不需要阅读手写文件。 英文的OCR非常常见, 但在孟加拉语中, 很难找到高质量的 OCR 应用程序 。 如果我们能将机器学习和深层次学习与OCR 结合起来, 这可能是对该领域的巨大贡献。 各种研究人员已经提出了承认孟加拉手写字符的若干战略 。 许多 ML 算法和深层神经网络在他们的工作中被使用, 但他们的模型没有解释。 在我们的工作中, 我们使用了各种机器学习算法和CNN 来识别手写孟加拉语的数位。 我们从一些 ML 模型中获得了可接受的准确性, CNN给了我们极大的测试精度。 Grad- CAM 被我们的CNN 模型用作 XAI 方法, 给我们提供了对模型的洞察力, 帮助我们从图像中识别数字的兴趣来源 。