This paper studies optimal-area visibility representations of $n$-vertex outer-1-plane graphs, i.e. graphs with a given embedding where all vertices are on the boundary of the outer face and each edge is crossed at most once. We show that any graph of this family admits an embedding-preserving visibility representation whose area is $O(n^{1.5})$ and prove that this area bound is worst-case optimal. We also show that $O(n^{1.48})$ area can be achieved if we represent the vertices as L-shaped orthogonal polygons or if we do not respect the embedding but still have at most one crossing per edge. We also extend the study to other representation models and, among other results, construct asymptotically optimal $O(n\, pw(G))$ area bar-1-visibility representations, where $pw(G)\in O(\log n)$ is the pathwidth of the outer-1-planar graph $G$.
翻译:本文研究了以美元为单位的最佳区域可见度表现,即以美元为单位的顶层-1-平面图,即带有一个特定嵌入的图形,其中所有脊椎都位于外表边界上,每个边缘最多经过一次。我们显示,任何该家族的图形都承认以美元为单位的嵌入-保护可见度表现,其面积为美元(n ⁇ 1.5美元),并证明这一区域受约束是最差的。我们还显示,如果我们以L形或线形多边形表示顶部,或者如果我们不尊重嵌入点,但在每个边缘最多有一个跨越点,则可以实现$(n ⁇ 1.48美元)的区域。我们还将研究扩展至其他代表模式,并除其他结果外建构出非同步最佳的美元(n\, pw(G)$) 区域巴-1- 可见度表现,其中美元(g) 是外部-1-平面图的路径($G美元)。