In the general AntiFactor problem, a graph $G$ is given with a set $X_v\subseteq \mathbb{N}$ of forbidden degrees for every vertex $v$ and the task is to find a set $S$ of edges such that the degree of $v$ in $S$ is not in the set $X_v$. Standard techniques (dynamic programming + fast convolution) can be used to show that if $M$ is the largest forbidden degree, then the problem can be solved in time $(M+2)^k\cdot n^{O(1)}$ if a tree decomposition of width $k$ is given. However, significantly faster algorithms are possible if the sets $X_v$ are sparse: our main algorithmic result shows that if every vertex has at most $x$ forbidden degrees (we call this special case AntiFactor$_x$), then the problem can be solved in time $(x+1)^{O(k)}\cdot n^{O(1)}$. That is, the AntiFactor$_x$ is fixed-parameter tractable parameterized by treewidth $k$ and the maximum number $x$ of excluded degrees. Our algorithm uses the technique of representative sets, which can be generalized to the optimization version, but (as expected) not to the counting version of the problem. In fact, we show that #AntiFactor$_1$ is already #W[1]-hard parameterized by the width of the given decomposition. Moreover, we show that, unlike for the decision version, the standard dynamic programming algorithm is essentially optimal for the counting version. Formally, for a fixed nonempty set $X$, we denote by $X$-AntiFactor the special case where every vertex $v$ has the same set $X_v=X$ of forbidden degrees. We show the following lower bound for every fixed set $X$: if there is an $\epsilon>0$ such that #$X$-AntiFactor can be solved in time $(\max X+2-\epsilon)^k\cdot n^{O(1)}$ on a tree decomposition of width $k$, then the Counting Strong Exponential-Time Hypothesis (#SETH) fails.


翻译:在一般的反影学问题中, 给出一个以美元为美元( x) 的图表, 美元( x) 美元( 美元), 美元( 美元) 美元( 美元), 美元( 美元), 美元( 美元), 美元( 美元), 美元( 美元), 美元( 美元), 美元( 美元) 美元( 美元), 美元( 美元) 美元( 美元), 美元( 美元) 美元( 美元), 美元( 美元), 美元( 美元), 美元( 美元), 美元( 美元) 美元( 美元), 美元( 美元) 美元( 美元), 美元( 美元) 美元( ), 美元( 美元) 美元( ) 。 美元( 美元( 美元) 美元( ), 美元( 美元) 美元( ), 美元( 美元) 美元( ) 美元) 美元( 美元) 表示( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( ) ( 美元) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 美元) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

0
下载
关闭预览

相关内容

FPT:International Conference on Field-Programmable Technology。 Explanation:现场可编程技术国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/fpt/
专知会员服务
81+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2020年12月14日
自动机器学习:最新进展综述
专知会员服务
119+阅读 · 2019年10月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
9+阅读 · 2019年11月15日
这么多年,终于知道为啥右指针不能往回走了
九章算法
5+阅读 · 2019年4月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【 关关的刷题日记47】Leetcode 38. Count and Say
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
0+阅读 · 2021年12月11日
VIP会员
相关资讯
已删除
将门创投
9+阅读 · 2019年11月15日
这么多年,终于知道为啥右指针不能往回走了
九章算法
5+阅读 · 2019年4月15日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【 关关的刷题日记47】Leetcode 38. Count and Say
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月14日
Arxiv
0+阅读 · 2021年12月13日
Arxiv
0+阅读 · 2021年12月12日
Arxiv
0+阅读 · 2021年12月11日
Top
微信扫码咨询专知VIP会员