We present a class of spatiotemporal models for Poisson areal data suitable for the analysis of emerging infectious diseases. These models assume Poisson observations related through a link equation to a latent random field process. This latent random field process evolves through time with proper Gaussian Markov random field convolutions. Our approach naturally accommodates flexible structures such as distinct but interacting temporal trends for each region and across-time contamination among neighboring regions. We develop a Bayesian analysis approach with a simulation-based procedure: specifically, we construct a Markov chain Monte Carlo algorithm based on the generalized extended Kalman filter to obtain samples from an approximate posterior distribution. Finally, for the comparison of Poisson spatiotemporal models, we develop a simulation-based conditional Bayes factor. We illustrate the utility and flexibility of our Poisson spatiotemporal framework with an application to the number of acquired immunodeficiency syndrome (AIDS) cases during the period 1982-2007 in Rio de Janeiro.
翻译:我们提出了适合分析新出现的传染病的Poisson 类随机模型。这些模型假定Poisson 观测通过链接方程式与潜伏随机场过程相关联。这种潜伏随机场过程随着时间随着适当的Gaussian Markov 随机场演变而演化。我们的方法自然地适应灵活的结构,例如每个区域不同但相互作用的时间趋势以及相邻区域之间的跨时间污染。我们开发了一种模拟程序的Bayesian分析方法:具体地说,我们根据普遍扩大的Kalman过滤器建造了Markov连锁Monte Carlo算法,从近似远地点分布中获取样本。最后,为了比较Poisson SPatiomoral模型,我们开发了一个基于模拟的有条件的Bayes系数。我们用1982-2007年期间里约热内卢的Poisson SPaototeomal框架来应用获得性免疫综合症(艾滋病)病例的数量。