A longstanding goal of artificial intelligence is to create artificial agents capable of learning to perform tasks that require sequential decision making. Importantly, while it is the artificial agent that learns and acts, it is still up to humans to specify the particular task to be performed. Classical task-specification approaches typically involve humans providing stationary reward functions or explicit demonstrations of the desired tasks. However, there has recently been a great deal of research energy invested in exploring alternative ways in which humans may guide learning agents that may, e.g., be more suitable for certain tasks or require less human effort. This survey provides a high-level overview of five recent machine learning frameworks that primarily rely on human guidance apart from pre-specified reward functions or conventional, step-by-step action demonstrations. We review the motivation, assumptions, and implementation of each framework, and we discuss possible future research directions.


翻译:人造情报的长期目标是创造能够学会执行需要先后决策的任务的人工代理人。 重要的是,虽然是人工代理人学习和采取行动,但人类仍有责任具体规定要完成的特定任务。经典任务区分方法通常涉及人提供固定的奖励功能或明确展示所期望的任务。然而,最近投入了大量研究精力,探索人类可以指导学习代理人的替代方法,例如,可能更适合某些任务或更不需要人的努力。这项调查对最近五个主要依赖人类指导的机器学习框架进行了高级别概述,这些框架除了事先规定的奖励功能或常规的、逐步的行动示范之外,还主要依赖人类指导。我们审查了每个框架的动机、假设和执行情况,并讨论了未来可能的研究方向。

0
下载
关闭预览

相关内容

注意力机制综述
专知会员服务
82+阅读 · 2021年1月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年9月11日
Arxiv
11+阅读 · 2021年3月25日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关VIP内容
注意力机制综述
专知会员服务
82+阅读 · 2021年1月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员