We study dynamical Galerkin schemes for evolutionary partial differential equations (PDEs), where the projection operator changes over time. When selecting a subset of basis functions, the projection operator is non-differentiable in time and an integral formulation has to be used. We analyze the projected equations with respect to existence and uniqueness of the solution and prove that non-smooth projection operators introduce dissipation, a result which is crucial for adaptive discretizations of PDEs, e.g., adaptive wavelet methods. For the Burgers equation we illustrate numerically that thresholding the wavelet coefficients, and thus changing the projection space, will indeed introduce dissipation of energy. We discuss consequences for the so-called `pseudo-adaptive' simulations, where time evolution and dealiasing are done in Fourier space, whilst thresholding is carried out in wavelet space. Numerical examples are given for the inviscid Burgers equation in 1D and the incompressible Euler equations in 2D and 3D.
翻译:我们研究进化部分差异方程式(PDEs)的动态Galerkin计划,预测操作员会随时间变化。当选择一组基础功能时,预测操作员在时间上是不可区分的,必须使用整体配方。我们分析有关解决方案的存在和独特性的预测方程式,并证明非单向投影操作员引入散射,这是PDE的适应性离散(例如适应性波列方法)的关键结果。对于汉堡运算员方程式,我们用数字来说明,将波格系数阈值定在数值上,从而改变投影空间,这确实会造成能量的消散。我们讨论所谓的“假体适应性”模拟的结果,即时间演化和交易在Fourier空间进行,而阈值是在波尔特空间进行的。对于1D的逆向布尔格斯方程式和2D和3D的不压 Euler方程式提供了数字实例。