We provide a sufficient condition for solvability of a system of real quadratic equations $p_i(x)=y_i$, $i=1, \ldots, m$, where $p_i: {\mathbb R}^n \longrightarrow {\mathbb R}$ are quadratic forms. By solving a positive semidefinite program, one can reduce it to another system of the type $q_i(x)=\alpha_i$, $i=1, \ldots, m$, where $q_i: {\mathbb R}^n \longrightarrow {\mathbb R}$ are quadratic forms and $\alpha_i=\mathrm{tr\ } q_i$. We prove that the latter system has solution $x \in {\mathbb R}^n$ if for some (equivalently, for any) orthonormal basis $A_1,\ldots, A_m$ in the space spanned by the matrices of the forms $q_i$, the operator norm of $A_1^2 + \ldots + A_m^2$ does not exceed $\eta/m$ for some absolute constant $\eta > 0$. The condition can be checked in polynomial time and is satisfied, for example, for random $q_i$ provided $m \leq \gamma \sqrt{n}$ for an absolute constant $\gamma >0$. We prove a similar sufficient condition for a system of homogeneous quadratic equations to have a non-trivial solution. While the condition we obtain is of an algebraic nature, the proof relies on analytic tools including Fourier analysis and measure concentration.
翻译:我们为真正的二次方程式的可溶性提供了充足条件。 通过解决正半脱脂程序, 可以将它降为另一种 $q_i (x) 的系统, 美元=1, 美元=y_ 美元, 美元=1, 美元=1, 美元=1, 美元=1, 美元=i, 美元=1, 美元=1, 美元=i, 美元=1, 美元=1, 美元=i, 美元=1, 美元=1, 美元=1, 美元=i: mathb Rán=1, 美元=1, 美元=glightrow=mathb R}, 美元= 美元=i: mathb R+alightrightrollorrow =1, 美元=qphlightrr==rqr=qr=qr=r=q_ 美元。 我们证明后一种系统能解 $x, =qralma al_alma al_al_alma_alma alma al al_alma_alma_al_al_al_al_al al alma al al_al_ a mexal_ a mex a mess a mess a mess a mess a mess a mess a mess a mess a mess a mess.