A new portmanteau test statistic is proposed for detecting nonlinearity in time series data. In this paper, we elaborate on the Toeplitz autocorrelation matrix to the autocorrelation and cross-correlation of residuals and squared residuals block matrix. We derive a new portmanteau test statistic using the log of the determinant of the mth autocorrelations and cross-correlations block matrix. The asymptotic distribution of the proposed test statistic is derived as a linear combination of chi-squared distributions and can be approximated by a gamma distribution. This test is applied to identify the linearity and nonlinearity dependency of some stationary time series models. It is shown that the convergence of the new test to its asymptotic distribution is reasonable with higher power than other tests in many situations. We demonstrate the efficiency of the proposed test by investigating linear and nonlinear effects in Vodafone Qatar and Nikkei-300 daily returns.
翻译:为了探测时间序列数据中的非线性,提议了一个新的端口体测试统计。 在本文中,我们详细阐述了托普利茨的自动剖面矩阵与残余物和平方残余物区块矩阵的自动和交叉关系。我们用脉体关系和交叉关系区块矩阵决定因素的日志来得出一个新的端口体测试统计。拟议测试统计的无症状分布是作为奇类方分布的线性组合推导出来的,并且可以以伽马分布为近似。这一测试用于确定某些固定时间序列模型的线性和非线性依赖性。我们表明,新试验与其非线性分布的趋同性与在许多情况下比其他试验的功率更高。我们通过调查Vodafone Qatar 和 Nikkei-300 日回报的线性和非线性效应来证明拟议测试的效率。