This brief technical report describes our submission to the Action Spotting SoccerNet Challenge 2022. The challenge was part of the CVPR 2022 ActivityNet Workshop. Our submission was based on a recently proposed method which focuses on increasing temporal precision via a densely sampled set of detection anchors. Due to its emphasis on temporal precision, this approach had shown significant improvements in the tight average-mAP metric. Tight average-mAP was used as the evaluation criterion for the challenge, and is defined using small temporal evaluation tolerances, thus being more sensitive to small temporal errors. In order to further improve results, here we introduce small changes in the pre- and post-processing steps, and also combine different input feature types via late fusion. These changes brought improvements that helped us achieve the first place in the challenge and also led to a new state-of-the-art on SoccerNet's test set when using the dataset's standard experimental protocol. This report briefly reviews the action spotting method based on dense detection anchors, then focuses on the modifications introduced for the challenge. We also describe the experimental protocols and training procedures we used, and finally present our results.
翻译:这份简短的技术报告描述了我们提交2022年SeccerNet挑战行动观察报告的情况。挑战是CVPR 2022活动网讲习班的一部分。我们提交的资料是根据最近提出的一种方法提出的,该方法的重点是通过一组密集抽样的探测锚提高时间精确度。由于强调时间精确度,这种方法在紧凑的平均 mAP衡量标准上显示出了显著的改进。使用紧凑的平均 mAP作为挑战的评估标准,并且使用微小的时间评价容忍度来界定,从而对小的时间错误更加敏感。为了进一步改进结果,我们在这里对预处理和后处理步骤作了微小的改动,并且通过延迟聚合将不同的输入特征类型结合起来。这些改动也带来了改进,帮助我们在挑战中取得第一个位置,并导致在使用数据集标准实验协议时对SoccerNet的测试集产生了新的状态。本报告简要回顾了基于密度探测锚的行动观察方法,然后着重介绍了为挑战提出的修改。我们还描述了我们所使用的实验程序和培训程序,最后介绍了我们使用的结果。