Graphical User Interface (GUI) provides a visual bridge between a software application and end users, through which they can interact with each other. With the upgrading of mobile devices and the development of aesthetics, the visual effects of the GUI are more and more attracting, and users pay more attention to the accessibility and usability of applications. However, such GUI complexity posts a great challenge to the GUI implementation. According to our pilot study of crowdtesting bug reports, display issues such as text overlap, component occlusion, missing image always occur during GUI rendering on different devices due to the software or hardware compatibility. They negatively influence the app usability, resulting in poor user experience. To detect these issues, we propose a fully automated approach, Nighthawk, based on deep learning for modelling visual information of the GUI screenshot. Nighthawk can detect GUIs with display issues and also locate the detailed region of the issue in the given GUI for guiding developers to fix the bug. At the same time, training the model needs a large amount of labeled buggy screenshots, which requires considerable manual effort to prepare them. We therefore propose a heuristic-based training data auto-generation method to automatically generate the labeled training data. The evaluation demonstrates that our Nighthawk can achieve average 0.84 precision and 0.84 recall in detecting UI display issues, average 0.59 AP and 0.60 AR in localizing these issues. We also evaluate Nighthawk with popular Android apps on Google Play and F-Droid, and successfully uncover 151 previously-undetected UI display issues with 75 of them being confirmed or fixed so far.


翻译:图形用户界面( GUI) 提供了一个软件应用程序和终端用户之间的直观桥梁, 他们可以通过它彼此互动。 随着移动设备的升级和美学的开发, GUI 的视觉效果越来越吸引人, 用户更加关注应用程序的可访问性和可用性。 然而, 图形用户界面的复杂性给 GUI 的实施带来了巨大的挑战。 根据我们对人群测试错误报告进行的试点研究, 显示文本重叠、 部件隔离、 由于软件或硬件兼容性, GUI 在不同设备上显示图像时总是会出现缺失的问题。 它们对应用的可用性产生了负面影响, 导致用户经验差。 为了检测这些问题, 我们提议采用完全自动化的方法, 夜鹰, 以深层次学习模拟图形界面屏幕的视觉信息为基础, 并且更加关注应用程序的可访问性。 夜鹰可以检测图形界面的界面, 并将问题的详细区域定位到指导开发者修补错误。 同时, 模型需要大量贴标签的百病的屏幕截图, 需要大量的手工工作来准备这些图。 因此, 我们提议一种基于 heurist- entical 培训的Gen- train dain destal- destalalal- delial dal dal deal deal deal deal deal dre dre dreal dreald dreal deal deald dreal deal deal deal deal dald dal deald dald dal dal dal deal dal dald dald.

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
92+阅读 · 2020年2月28日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员