In this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed-form relations are derived for mean square error (MSE), mean square deviation (MSD) and excess mean square error (EMSE)of analyzed network in tracking Rayleigh fading channel and random walk model. Comparison between theoretical and simulation results shows a perfect match and verifies performed calculations.
翻译:在本文中,我们侧重于跟踪适应性网络中递增适应性 LMS 算法的性能。 因此, 我们认为未知的重量矢量是一个不同时间序列。 首先,我们分析网络跟踪一个不同时间的重量矢量的性能, 然后通过随机行走模型解释Rayleigh 淡化通道的估计。 在跟踪Rayleigh 淡化通道和随机行走模型中, 用于跟踪 Rayleigh 淡化通道和随机行走模型的经分析的网络( EMSE) 的平均平方差( MSE)、 平均平方偏差( MSD) 和超平均值平方差( EMSE) 的封闭式关系被推导出。 理论结果与模拟结果的比较显示完美匹配并验证了计算结果 。