Pandemics often cause dramatic losses of human lives and impact our societies in many aspects such as public health, tourism, and economy. To contain the spread of an epidemic like COVID-19, efficient and effective contact tracing is important, especially in indoor venues where the risk of infection is higher. In this work, we formulate and study a novel query called Indoor Contact Query (ICQ) over raw, uncertain indoor positioning data that digitalizes people's movements indoors. Given a query object o, e.g., a person confirmed to be a virus carrier, an ICQ analyzes uncertain indoor positioning data to find objects that most likely had close contact with o for a long period of time. To process ICQ, we propose a set of techniques. First, we design an enhanced indoor graph model to organize different types of data necessary for ICQ. Second, for indoor moving objects, we devise methods to determine uncertain regions and to derive positioning samples missing in the raw data. Third, we propose a query processing framework with a close contact determination method, a search algorithm, and the acceleration strategies. We conduct extensive experiments on synthetic and real datasets to evaluate our proposals. The results demonstrate the efficiency and effectiveness of our proposals.
翻译:-
大流行通常导致人类生命的惨烈损失,并在公共卫生、旅游业和经济等多个方面影响我们的社会。为了遏制COVID-19等流行病的传播,有效的接触追踪尤为重要,特别是在室内场所,那里的感染风险更高。在这项工作中,我们提出并探讨了一种新型查询,称为室内接触查询(ICQ),该查询在数字化人们室内移动的原始、不确定的定位数据上进行操作。给定查询对象o(例如确认为病毒携带者的人),ICQ分析不确定的室内定位数据,找到最有可能与o密切接触了很长一段时间的对象。为了处理ICQ,我们提出了一系列技术。首先,我们设计了一个增强型室内图模型,以组织ICQ所需的各种数据类型。其次,针对室内移动对象,我们设计了方法来确定不确定区域,并确定原始数据中缺失的定位样本。第三,我们提出了一个查询处理框架,该框架具有近距离接触确定方法、搜索算法和加速策略。我们对合成和实际数据集进行了广泛的实验,以评估我们的提议。结果表明了我们提议的效率和有效性。