This paper presents a learning-based approach to consider the effect of unobservable world states in kinodynamic motion planning in order to enable accurate high-speed off-road navigation on unstructured terrain. Existing kinodynamic motion planners either operate in structured and homogeneous environments and thus do not need to explicitly account for terrain-vehicle interaction, or assume a set of discrete terrain classes. However, when operating on unstructured terrain, especially at high speeds, even small variations in the environment will be magnified and cause inaccurate plan execution. In this paper, to capture the complex kinodynamic model and mathematically unknown world state, we learn a kinodynamic planner in a data-driven manner with onboard inertial observations. Our approach is tested on a physical robot in different indoor and outdoor environments, enables fast and accurate off-road navigation, and outperforms environment-independent alternatives, demonstrating 52.4% to 86.9% improvement in terms of plan execution success rate while traveling at high speeds.
翻译:本文介绍了一种基于学习的方法,以考虑在动力动力运动规划中无法观察的世界状态的影响,从而能够在没有结构的地形上实现精确高速的高速越野导航。现有的动力动力运动规划者要么在结构化和同质的环境中运作,因此不需要明确说明地形-车辆相互作用,要么假设一系列离散地形等级。然而,在非结构化地形作业时,特别是高速作业时,即使环境的微小变化也会放大,导致计划执行不准确。在本文中,为了捕捉复杂的动力动力模型和数学上未知的世界状态,我们用机载惯性观测以数据驱动的方式学习一个动力动力规划者。我们的方法是在不同的室内和室外环境中的物理机器人上测试,能够快速和准确的越野航行,以及超越环境独立的替代品,表明在高速旅行时计划执行成功率方面有52.4%至86.9%的改善。