We demonstrate the emergence of weight matrix singular value decomposition (SVD) in interpreting neural networks (NNs) for parameter estimation from noisy signals. The SVD appears naturally as a consequence of initial application of a descrambling transform - a recently-developed technique for addressing interpretability in NNs \cite{amey2021neural}. We find that within the class of noisy parameter estimation problems, the SVD may be the means by which networks memorize the signal model. We substantiate our theoretical findings with empirical evidence from both linear and non-linear settings. Our results also illuminate the connections between a mathematical theory of semantic development \cite{saxe2019mathematical} and neural network interpretability.
翻译:在对神经网络(NNSs)进行超声信号参数估测时,我们展示了超重矩阵单值分解(SVD)在解释神经网络(NNSs)时出现。SVD自然地出现,因为最初应用了脱冠变异(一种最近开发的解决NNSs\cite{amey2021neural}可解释性的技术)。我们发现,在噪音参数估测问题的类别中,SVD可能是网络对信号模型进行模拟的手段。我们用线性和非线性设置的经验证据来证实我们的理论结论。我们的结果还说明了语义发展\cite{saxe2019数学}和神经网络可解释性的数学理论之间的联系。