In this study we focus on the problem of joint learning of multiple differential networks with function Magnetic Resonance Imaging (fMRI) data sets from multiple research centers. As the research centers may use different scanners and imaging parameters, joint learning of differential networks with fMRI data from different centers may reflect the underlying mechanism of neurological diseases from different perspectives while capturing the common structures. We transform the task as a penalized logistic regression problem, and exploit sparse group Minimax Concave Penalty (gMCP) to induce common structures among multiple differential networks and the sparse structures of each differential network. To further enhance the empirical performance, we develop an ensemble-learning procedure. We conduct thorough simulation study to assess the finite-sample performance of the proposed method and compare with state-of-the-art alternatives. We apply the proposed method to analyze fMRI datasets related with Attention Deficit Hyperactivity Disorder from various research centers. The identified common hub nodes and differential interaction patterns coincides with the existing experimental studies.
翻译:在这项研究中,我们侧重于从多个研究中心联合学习具有磁共振成像功能的多种不同网络数据集的问题。由于研究中心可能使用不同的扫描仪和成像参数,不同中心利用FMRI数据联合学习差异网络可能从不同角度反映神经疾病的基本机制,同时捕捉共同结构。我们把这项任务转换成一个惩罚性后勤回归问题,并利用稀疏群体小型马克思聚合惩罚(gMCP),在多种差异网络和每个差异网络的稀疏结构之间形成共同结构。为了进一步提高经验性能,我们开发了一个共同学习程序。我们进行了彻底的模拟研究,以评估拟议方法的有限抽样性能,并与最新替代方法进行比较。我们采用拟议方法分析与各个研究中心的注意力不足超活动不规则相关的FMRI数据集。已确定的共同中心节点和差异互动模式与现有的实验研究相吻合。