Group testing can help maintain a widespread testing program using fewer resources amid a pandemic. In group testing, we are given $n$ samples, one per individual. These samples are arranged into $m < n$ pooled samples, where each pool is obtained by mixing a subset of the $n$ individual samples. Infected individuals are then identified using a group testing algorithm. In this paper, we use side information (SI) collected from contact tracing (CT) within nonadaptive/single-stage group testing algorithms. We generate CT SI data by incorporating characteristics of disease spread between individuals. These data are fed into two signal and measurement models for group testing, and numerical results show that our algorithms provide improved sensitivity and specificity. We also show how to incorporate CT SI into the design of the pooling matrix. That said, our numerical results suggest that the utilization of SI in the pooling matrix design based on the minimization of a weighted coherence measure does not yield significant performance gains beyond the incorporation of SI in the group testing algorithm.
翻译:群体测试有助于在大流行病发生时利用较少的资源维持一个广泛的测试方案。在群体测试中,我们得到的是每个人一个单位的一美元样本。这些样本被安排为m < n$集合样本,每个集合样本中,每个集合样本都是通过混合一个零美元样本的子集获得的。然后利用一个群体测试算法确定感染者的身份。在本文中,我们使用非适应/单一阶段群体测试算法中从接触跟踪中收集的侧面信息(SI)。我们通过纳入个人疾病传播特征生成CT SI数据。这些数据被输入两个用于群体测试的信号和测量模型,而数字结果显示我们的算法提供了更好的敏感性和特性。我们还展示了如何将CT SI纳入集合矩阵的设计中。这说明,我们的数字结果表明,在尽量减少加权一致性计量方法的基础上,在集合矩阵设计中使用SI不会产生显著的绩效收益,超过将SI纳入群体测试算法。