We are concerned here with unrestricted maximum likelihood estimation in a sparse $p_0$ model with covariates for directed networks. The model has a density parameter $\nu$, a $2n$-dimensional node parameter $\bs{\eta}$ and a fixed dimensional regression coefficient $\bs{\gamma}$ of covariates. Previous studies focus on the restricted likelihood inference. When the number of nodes $n$ goes to infinity, we derive the $\ell_\infty$-error between the maximum likelihood estimator (MLE) $(\widehat{\bs{\eta}}, \widehat{\bs{\gamma}})$ and its true value $(\bs{\eta}, \bs{\gamma})$. They are $O_p( (\log n/n)^{1/2} )$ for $\widehat{\bs{\eta}}$ and $O_p( \log n/n)$ for $\widehat{\bs{\gamma}}$, up to an additional factor. This explains the asymptotic bias phenomenon in the asymptotic normality of $\widehat{\bs{\gamma}}$ in \cite{Yan-Jiang-Fienberg-Leng2018}. Further, we derive the asymptotic normality of the MLE. Numerical studies and a data analysis demonstrate our theoretical findings.
翻译:我们在这里关注的是,在一个稀薄的美元=0美元模型中,无限制的最大可能性估算值与定向网络的共差值。该模型有一个密度参数$\nu$,一个$2n$的维度节点参数$\bs=eta}$,和一个固定的维度回归系数$\bs=gamma}美元。先前的研究侧重于有限的概率推算。当节点数量到达无限值时,我们从最大可能性估算值(MLE)之间得出$20美元和$_p(log n/n),从最大可能性估算值(MLE)$(CUberyatial_bs_bs_heta},\\bbx_gamma}$, 其真实值$(bsxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx的理论的理论的理论的理论的理论的理论的理论值) 的理论值。