To learn distinguishable patterns, most of recent works in vehicle re-identification (ReID) struggled to redevelop official benchmarks to provide various supervisions, which requires prohibitive human labors. In this paper, we seek to achieve the similar goal but do not involve more human efforts. To this end, we introduce a novel framework, which successfully encodes both geometric local features and global representations to distinguish vehicle instances, optimized only by the supervision from official ID labels. Specifically, given our insight that objects in ReID share similar geometric characteristics, we propose to borrow self-supervised representation learning to facilitate geometric features discovery. To condense these features, we introduce an interpretable attention module, with the core of local maxima aggregation instead of fully automatic learning, whose mechanism is completely understandable and whose response map is physically reasonable. To the best of our knowledge, we are the first that perform self-supervised learning to discover geometric features. We conduct comprehensive experiments on three most popular datasets for vehicle ReID, i.e., VeRi-776, CityFlow-ReID, and VehicleID. We report our state-of-the-art (SOTA) performances and promising visualization results. We also show the excellent scalability of our approach on other ReID related tasks, i.e., person ReID and multi-target multi-camera (MTMC) vehicle tracking.


翻译:为了了解可辨别的模式,最近大多数车辆再识别(ReID)工程都努力重新制定官方基准,以提供各种监督,这需要令人望而却步的人力劳动。在本文件中,我们力求实现相似的目标,但并不涉及更多的人力努力。为此,我们引入了一个新框架,成功地将几何本地特征和全球表示编码,以区分车辆情况,仅通过官方身份标签的监管加以优化。具体地,鉴于我们深知ReID中的物体具有类似的几何特征,我们提议借用自我监督的代表学习,以促进几何特征的发现。为了缩小这些特征,我们引入了一个可解释的注意模块,以本地最大集合为核心,而不是完全自动学习,其机制完全可以理解,其反应图也非常合理。据我们所知,我们是第一个进行自我监督学习以发现几何特征的人。我们对三种最受欢迎的车辆再识别数据集进行了全面实验,即VeRi-776、CityFlow-ReID和SreID。我们报告我们的可视性、可视性和多目的飞行器相关结果(SOAT)。我们还报告我们最有希望的多轨道。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员