As the meta-analysis of more than one diagnostic tests can impact clinical decision making and patient health, there is an increasing body of research in models and methods for meta-analysis of studies comparing multiple diagnostic tests. The application of the existing models to compare the accuracy of three or more tests suffers from the curse of multi-dimensionality, i.e., either the number of model parameters increase rapidly or high dimensional integration is required. To overcome these issues in joint meta-analysis of studies comparing $T >2$ diagnostic tests in a multiple tests design with a gold standard, we propose a model that assumes the true positives and true negatives for each test are conditionally independent and binomially distributed given the $2T$-variate latent vector of sensitivities and specificities. For the random effects distribution, we employ an one-factor copula that provides tail dependence or tail asymmetry. Maximum likelihood estimation of the model is straightforward as the derivation of the likelihood requires bi-dimensional instead of $2T$-dimensional integration. Our methodology is demonstrated with an extensive simulation study and an application example that determines which is the best test for the diagnosis of rheumatoid arthritis.
翻译:由于对不止一次诊断性测试的元分析能够影响临床决策和病人健康,因此,在对多项诊断性测试进行比较的研究的元分析模型和方法方面,对多种诊断性测试的模型和方法的研究越来越多。应用现有模型比较三个或三个以上测试的准确性,是多维的诅咒,即模型参数的数量迅速增加,或需要高维整合。为了在对以金质标准进行多重测试设计中以$T >2美元的诊断性测试来比较的研究的联合元分析中克服这些问题,我们建议了一个模型,假设每项测试的真实正数和真实负数是有条件的、独立的和二元分布的。对于随机效果分布,我们采用一个单一因素的相交曲线,提供尾部依赖性或尾部不对称性。模型的最大可能性估算是直接的,因为对可能性的推断需要双维而不是2T$的元整合。我们的方法通过广泛的模拟研究以及一个应用实例来证明我们的方法是诊断淋巴节炎的最佳测试。