There exist many bivariate parametric copulas to model bivariate data with different dependence features. We propose a new bivariate parametric copula family that cannot only handle various dependence patterns that appear in the existing parametric bivariate copula families, but also provides a more enriched dependence structure. The proposed copula construction exploits finite mixtures of bivariate normal distributions. The mixing operation, the distinct correlation and mean parameters at each mixture component introduce quite a flexible dependence. The new parametric copula is theoretically investigated, compared with a set of classical bivariate parametric copulas and illustrated on two empirical examples from astrophysics and agriculture where some of the variables have peculiar and asymmetric dependence, respectively.
翻译:存在许多双变参数相交组,以模拟具有不同依赖性特征的双变相数据。我们建议建立一个新的双变准相交组,不能只处理现有双数相交组家庭出现的各种依赖性模式,而且提供更丰富的依赖性结构。拟议合差结构利用了两变法正常分布的有限混合物。混合操作、不同关联和每种混合物成分的平均参数都引入了相当灵活的依赖性。新的双变相相在理论上进行了调查,与一套典型的双变对数相交组别相比,对新的双变相相对立组别进行了调查,并用两个分别来自天体物理学和农业的实验实例加以说明,其中的一些变量具有特殊和不对称依赖性。