This article introduces a novel concatenated coding scheme called sparse regression LDPC (SR-LDPC) codes. An SR-LDPC code consists of an outer non-binary LDPC code and an inner sparse regression code (SPARC) whose respective field size and section sizes are equal. For such codes, an efficient decoding algorithm is proposed based on approximate message passing (AMP) that dynamically shares soft information between inner and outer decoders. This dynamic exchange of information is facilitated by a denoiser that runs belief propagation (BP) on the factor graph of the outer LDPC code within each AMP iteration. It is shown that this denoiser falls within the class of non-separable pseudo-Lipschitz denoising functions and thus that state evolution holds for the proposed AMP-BP algorithm. Leveraging the rich structure of SR-LDPC codes, this article proposes an efficient low-dimensional approximate state evolution recursion that can be used for efficient hyperparameter tuning, thus paving the way for future work on optimal code design. Finally, numerical simulations demonstrate that SR-LDPC codes outperform contemporary codes over the AWGN channel for parameters of practical interest. SR-LDPC codes are shown to be viable means to obtain shaping gains over the AWGN channel.
翻译:暂无翻译