In the Vertex Cover Reconfiguration (VCR) problem, given a graph $G$, positive integers $k$ and $\ell$ and two vertex covers $S$ and $T$ of $G$ of size at most $k$, we determine whether $S$ can be transformed into $T$ by a sequence of at most $\ell$ vertex additions or removals such that every operation results in a vertex cover of size at most $k$. Motivated by results establishing the W[1]-hardness of VCR when parameterized by $\ell$, we delineate the complexity of the problem restricted to various graph classes. In particular, we show that VCR remains W[1]-hard on bipartite graphs, is NP-hard, but fixed-parameter tractable on (regular) graphs of bounded degree and more generally on nowhere dense graphs and is solvable in polynomial time on trees and (with some additional restrictions) on cactus graphs.
翻译:在VCR(VCR)问题中,根据一张G$的图表,正整数为K美元,美元和美元,以及两个顶点,以美元和美元为单位,以美元和美元为单位,以美元为单位,我们确定S$是否可以通过最多为$@ell的顶点添加或清除序列转换成T$,这样,每次操作都会产生最大为$k$的顶点覆盖。受确定VCR的W[1]-硬度(以美元为单位)结果的驱动,我们划定了这一问题的复杂程度,限制在不同的图形类别。特别是,我们显示VCRW[1]硬度在双方图上,是硬的,但固定的参数在(常规)受约束程度的图形上可移动,在更普遍的密度的图形上,在树的多角时是可溶解的,并且(在一些额外的限制下)对cactus图。