A fringe subtree of a rooted tree is a subtree induced by one of the vertices and all its descendants. We consider the problem of estimating the number of distinct fringe subtrees in two types of random trees: simply generated trees and families of increasing trees (recursive trees, $d$-ary increasing trees and generalized plane-oriented recursive trees). We prove that the order of magnitude of the number of distinct fringe subtrees (under rather mild assumptions on what `distinct' means) in random trees with $n$ vertices is $n/\sqrt{\log n}$ for simply generated trees and $n/\log n$ for increasing trees.


翻译:根树的边缘亚树枝是由一个脊椎及其后代引生的子树。我们考虑了估计两类随机树中不同的边缘亚树数量的问题:仅生树和树木增加的家族(树再生、以美元计增长的树木和以平面为方向的普通循环树)。我们证明,在胡乱树木中,具有“明显”含义的“模糊”一词假设值相当温和的细树数量的数量,对于仅生树来说是$/\sqrt\log n},对于增加树木而言是$/sqrt\log n$/n/log n$。

0
下载
关闭预览

相关内容

专知会员服务
38+阅读 · 2020年11月24日
一份简单《图神经网络》教程,28页ppt
专知会员服务
125+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月28日
Random Forests for dependent data
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
0+阅读 · 2021年6月25日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
多高的AUC才算高?
ResysChina
7+阅读 · 2016年12月7日
相关论文
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月28日
Random Forests for dependent data
Arxiv
0+阅读 · 2021年6月28日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
0+阅读 · 2021年6月25日
Adaptive Neural Trees
Arxiv
4+阅读 · 2018年12月10日
Top
微信扫码咨询专知VIP会员