Machine learning models are frequently employed to perform either purely physics-free or hybrid downscaling of climate data. However, the majority of these implementations operate over relatively small downscaling factors of about 4--6x. This study examines the ability of convolutional neural networks (CNN) to downscale surface wind speed data from three different coarse resolutions (25km, 48km, and 100km side-length grid cells) to 3km and additionally focuses on the ability to recover subgrid-scale variability. Within each downscaling factor, namely 8x, 16x, and 32x, we consider models that produce fine-scale wind speed predictions as functions of different input features: coarse wind fields only; coarse wind and fine-scale topography; and coarse wind, topography, and temporal information in the form of a timestamp. Furthermore, we train one model at 25km to 3km resolution whose fine-scale outputs are probability density function parameters through which sample wind speeds can be generated. All CNN predictions performed on one out-of-sample data outperform classical interpolation. Models with coarse wind and fine topography are shown to exhibit the best performance compared to other models operating across the same downscaling factor. Our timestamp encoding results in lower out-of-sample generalizability compared to other input configurations. Overall, the downscaling factor plays the largest role in model performance.


翻译:通常使用机器学习模型来对气候数据进行纯无物理或混合降尺度的降尺度,但是,这些执行中的大多数运行模式都是在相对较小的降尺度因素(约4-6x)下缩尺度因素(4-6x)下调因素下调的。本研究考察了进化神经网络(CNN)到从三个不同粗糙分辨率(25km、48km和100km侧长格格)到3km的地表风速数据缩放能力的能力(25km、48km和100km侧长格格)到3km分辨率。此外,我们将一个模型的精度输出为概率密度函数,通过这些模型可以生成下调风速。我们认为,每个降尺度因素(即8x、16x和32x)中,产生微缩风速度预测的模型是不同输入特性功能功能的功能:只有粗略的风场、粗略的风和精细的地形地形表;以及以时序图为形态的时空图信息。模型将一个模型用于其他最下调的阵列式,将显示为最下调的阵列。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
37+阅读 · 2021年2月10日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员