Unsupervised person re-identification (re-ID) aims at closing the performance gap to supervised methods. These methods build reliable relationship between data points while learning representations. However, we empirically show that the reason why they are successful is not only their label generation mechanisms, but also their unexplored designs. By studying two unsupervised person re-ID methods in a cross-method way, we point out a hard negative problem is handled implicitly by their designs of data augmentations and PK sampler respectively. In this paper, we find another simple solution for the problem, i.e., taking more positives during training, by which we generate pseudo-labels and update models in an iterative manner. Based on our findings, we propose a contrastive learning method without a memory back for unsupervised person re-ID. Our method works well on benchmark datasets and outperforms the state-of-the-art methods. Code will be made available.
翻译:无人监督的人重新识别( re- ID) 旨在缩小业绩差距, 以监督方法为目的。 这些方法在学习演示的同时在数据点之间建立可靠的关系。 但是, 我们从经验上表明, 它们成功的原因不仅是其标签生成机制, 还包括其未探索的设计。 通过以交叉方法研究两种无人监督的人重新识别方法, 我们指出一个严重的负面问题, 由数据增强和 PK 取样器的分别设计来暗中处理 。 在本文中, 我们找到了另一个简单的问题解决方案, 即: 在培训期间采取更多的积极措施, 从而产生假标签, 并以迭接方式更新模型 。 根据我们的调查结果, 我们提出一种对比式学习方法, 没有被监督的人重新识别的记忆。 我们的方法在基准数据集上运作良好, 并超越了最新方法。 代码将会被提供 。