We propose an adaptive optimisation approach for tuning stochastic model predictive control (MPC) hyper-parameters while jointly estimating probability distributions of the transition model parameters based on performance rewards. In particular, we develop a Bayesian optimisation (BO) algorithm with a heteroscedastic noise model to deal with varying noise across the MPC hyper-parameter and dynamics model parameter spaces. Typical homoscedastic noise models are unrealistic for tuning MPC since stochastic controllers are inherently noisy, and the level of noise is affected by their hyper-parameter settings. We evaluate the proposed optimisation algorithm in simulated control and robotics tasks where we jointly infer control and dynamics parameters. Experimental results demonstrate that our approach leads to higher cumulative rewards and more stable controllers.
翻译:我们建议一种适应性优化方法,用于调整随机模型预测控制(MPC)超参数,同时根据性能奖赏共同估计过渡模型参数的概率分布。特别是,我们开发一种贝叶斯优化(BO)算法,配有超光谱噪声模型模型,以应对多光谱和动态模型参数空间之间的不同噪音。典型的同质噪声模型对于调整MPC来说是不现实的,因为随机控制器本来就很吵闹,噪音水平受到其超光谱设置的影响。我们评估模拟控制和机器人任务中拟议的优化算法,我们在那里共同推断控制和动态参数。实验结果表明,我们的方法可以带来更高的累积奖赏和更稳定的控制器。