Previous formulations of group theory in ACL2 and Nqthm, based on either "encapsulate" or "defn-sk", have been limited by their failure to provide a path to proof by induction on the order of a group, which is required for most interesting results in this domain beyond Lagrange's Theorem (asserting the divisibility of the order of a group by that of a subgroup). We describe an alternative approach to finite group theory that remedies this deficiency, based on an explicit representation of a group as an operation table. We define a "defgroup" macro for generating parametrized families of groups, which we apply to the additive and multiplicative groups of integers modulo n, the symmetric groups, arbitrary quotient groups, and cyclic subgroups. In addition to a proof of Lagrange's Theorem, we present an inductive proof of the abelian case of a theorem of Cauchy: If the order of a group G is divisible by a prime p, then G has an element of order p.
翻译:ACL2 和 Nqthm 中以前基于“ 囊括” 或“ defn-sk” 的团体理论的表述方式受到限制,原因是它们未能按照一个团体的顺序通过诱导提供证明路径,而这是Lagrange理论领域最令人感兴趣的结果所必须的(主张一个团体的顺序由子群的顺序不同) 。我们描述了一个有限团体理论的替代方法,即根据一个团体作为操作表的明确表述来补救这一缺陷。我们定义了一个“分解组”宏,用于产生一个组合的组合,我们将其应用于一个组合的组合的组合、一个组合的组合、一个组合的组合、一个组合的组合、一个任意的变数组以及一个循环分组。除了Lagrange理论的证明外,我们还提出了一个Causicy理论的比子体案例的诱导证据:如果一个集团的G的顺序被一个主体的p可以分辨,那么G就有一个顺序要素。