Existing person re-identification (Re-ID) works mostly consider a short-term search problem assuming unchanged clothes and personal appearance. However, in real-world we often dress differently across locations, time, dates, seasons, weather, and events. As a result, the existing methods are unsuitable for long-term person Re-ID with clothes change involved. Whilst there are several recent long-term Re-ID attempts, a large realistic dataset with clothes change is lacking and indispensable for enabling extensive study as already experienced in short-term Re-ID setting. In this work, we contribute a large, realistic long-term person identification benchmark. It consists of 178K bounding boxes from 1.1K person identities, collected and constructed over 12 months. Unique characteristics of this dataset include: (1) Natural/native personal appearance (e.g., clothes and hair style) variations: The clothes-change and dressing styles all are highly diverse, with the reappearing gap in time ranging from minutes, hours, and days to weeks, months, seasons, and years. (2) Diverse walks of life: Persons across a wide range of ages and professions appear in different weather conditions (e.g., sunny, cloudy, windy, rainy, snowy, extremely cold) and events (e.g., working, leisure, daily activities). (3) Rich camera setups: The raw videos were recorded by 17 outdoor security cameras with various resolutions operating in a real-world surveillance system for a wide and dense block. (4) Largest scale: It covers the largest number of (17) cameras, (1, 121) identities, and (178, 407) bounding boxes, as compared to alternative datasets. Our dataset and benchmark codes are available on https://github.com/PengBoXiangShang/deepchange.

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem

Knowledge bases (KBs) have gradually become a valuable asset for many AI applications. While many current KBs are quite large, they are widely acknowledged as incomplete, especially lacking facts of long-tail entities, e.g., less famous persons. Existing approaches enrich KBs mainly on completing missing links or filling missing values. However, they only tackle a part of the enrichment problem and lack specific considerations regarding long-tail entities. In this paper, we propose a full-fledged approach to knowledge enrichment, which predicts missing properties and infers true facts of long-tail entities from the open Web. Prior knowledge from popular entities is leveraged to improve every enrichment step. Our experiments on the synthetic and real-world datasets and comparison with related work demonstrate the feasibility and superiority of the approach.

0
5
下载
预览

Person re-identification (re-ID) has attracted much attention recently due to its great importance in video surveillance. In general, distance metrics used to identify two person images are expected to be robust under various appearance changes. However, our work observes the extreme vulnerability of existing distance metrics to adversarial examples, generated by simply adding human-imperceptible perturbations to person images. Hence, the security danger is dramatically increased when deploying commercial re-ID systems in video surveillance, especially considering the highly strict requirement of public safety. Although adversarial examples have been extensively applied for classification analysis, it is rarely studied in metric analysis like person re-identification. The most likely reason is the natural gap between the training and testing of re-ID networks, that is, the predictions of a re-ID network cannot be directly used during testing without an effective metric. In this work, we bridge the gap by proposing Adversarial Metric Attack, a parallel methodology to adversarial classification attacks, which can effectively generate adversarial examples for re-ID. Comprehensive experiments clearly reveal the adversarial effects in re-ID systems. Moreover, by benchmarking various adversarial settings, we expect that our work can facilitate the development of robust feature learning with the experimental conclusions we have drawn.

0
3
下载
预览

Person re-identification (PReID) has received increasing attention due to it is an important part in intelligent surveillance. Recently, many state-of-the-art methods on PReID are part-based deep models. Most of them focus on learning the part feature representation of person body in horizontal direction. However, the feature representation of body in vertical direction is usually ignored. Besides, the spatial information between these part features and the different feature channels is not considered. In this study, we introduce a multi-branches deep model for PReID. Specifically, the model consists of five branches. Among the five branches, two of them learn the local feature with spatial information from horizontal or vertical orientations, respectively. The other one aims to learn interdependencies knowledge between different feature channels generated by the last convolution layer. The remains of two other branches are identification and triplet sub-networks, in which the discriminative global feature and a corresponding measurement can be learned simultaneously. All the five branches can improve the representation learning. We conduct extensive comparative experiments on three PReID benchmarks including CUHK03, Market-1501 and DukeMTMC-reID. The proposed deep framework outperforms many state-of-the-art in most cases.

0
3
下载
预览

Person re-identification (ReID) is to identify pedestrians observed from different camera views based on visual appearance. It is a challenging task due to large pose variations, complex background clutters and severe occlusions. Recently, human pose estimation by predicting joint locations was largely improved in accuracy. It is reasonable to use pose estimation results for handling pose variations and background clutters, and such attempts have obtained great improvement in ReID performance. However, we argue that the pose information was not well utilized and hasn't yet been fully exploited for person ReID. In this work, we introduce a novel framework called Attention-Aware Compositional Network (AACN) for person ReID. AACN consists of two main components: Pose-guided Part Attention (PPA) and Attention-aware Feature Composition (AFC). PPA is learned and applied to mask out undesirable background features in pedestrian feature maps. Furthermore, pose-guided visibility scores are estimated for body parts to deal with part occlusion in the proposed AFC module. Extensive experiments with ablation analysis show the effectiveness of our method, and state-of-the-art results are achieved on several public datasets, including Market-1501, CUHK03, CUHK01, SenseReID, CUHK03-NP and DukeMTMC-reID.

0
8
下载
预览

In Actor and Observer we introduced a dataset linking the first and third-person video understanding domains, the Charades-Ego Dataset. In this paper we describe the egocentric aspect of the dataset and present annotations for Charades-Ego with 68,536 activity instances in 68.8 hours of first and third-person video, making it one of the largest and most diverse egocentric datasets available. Charades-Ego furthermore shares activity classes, scripts, and methodology with the Charades dataset, that consist of additional 82.3 hours of third-person video with 66,500 activity instances. Charades-Ego has temporal annotations and textual descriptions, making it suitable for egocentric video classification, localization, captioning, and new tasks utilizing the cross-modal nature of the data.

0
4
下载
预览

Being a cross-camera retrieval task, person re-identification suffers from image style variations caused by different cameras. The art implicitly addresses this problem by learning a camera-invariant descriptor subspace. In this paper, we explicitly consider this challenge by introducing camera style (CamStyle) adaptation. CamStyle can serve as a data augmentation approach that smooths the camera style disparities. Specifically, with CycleGAN, labeled training images can be style-transferred to each camera, and, along with the original training samples, form the augmented training set. This method, while increasing data diversity against over-fitting, also incurs a considerable level of noise. In the effort to alleviate the impact of noise, the label smooth regularization (LSR) is adopted. The vanilla version of our method (without LSR) performs reasonably well on few-camera systems in which over-fitting often occurs. With LSR, we demonstrate consistent improvement in all systems regardless of the extent of over-fitting. We also report competitive accuracy compared with the state of the art.

0
3
下载
预览

In recent years, a growing body of research has focused on the problem of person re-identification (re-id). The re-id techniques attempt to match the images of pedestrians from disjoint non-overlapping camera views. A major challenge of re-id is the serious intra-class variations caused by changing viewpoints. To overcome this challenge, we propose a deep neural network-based framework which utilizes the view information in the feature extraction stage. The proposed framework learns a view-specific network for each camera view with a cross-view Euclidean constraint (CV-EC) and a cross-view center loss (CV-CL). We utilize CV-EC to decrease the margin of the features between diverse views and extend the center loss metric to a view-specific version to better adapt the re-id problem. Moreover, we propose an iterative algorithm to optimize the parameters of the view-specific networks from coarse to fine. The experiments demonstrate that our approach significantly improves the performance of the existing deep networks and outperforms the state-of-the-art methods on the VIPeR, CUHK01, CUHK03, SYSU-mReId, and Market-1501 benchmarks.

0
7
下载
预览

In this paper, we propose a novel feature learning framework for video person re-identification (re-ID). The proposed framework largely aims to exploit the adequate temporal information of video sequences and tackle the poor spatial alignment of moving pedestrians. More specifically, for exploiting the temporal information, we design a temporal residual learning (TRL) module to simultaneously extract the generic and specific features of consecutive frames. The TRL module is equipped with two bi-directional LSTM (BiLSTM), which are respectively responsible to describe a moving person in different aspects, providing complementary information for better feature representations. To deal with the poor spatial alignment in video re-ID datasets, we propose a spatial-temporal transformer network (ST^2N) module. Transformation parameters in the ST^2N module are learned by leveraging the high-level semantic information of the current frame as well as the temporal context knowledge from other frames. The proposed ST^2N module with less learnable parameters allows effective person alignments under significant appearance changes. Extensive experimental results on the large-scale MARS, PRID2011, ILIDS-VID and SDU-VID datasets demonstrate that the proposed method achieves consistently superior performance and outperforms most of the very recent state-of-the-art methods.

0
5
下载
预览

Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on pose. The model is based on a generative adversarial network (GAN) and used specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and highly complementary to features learned with the original images. Importantly, we now have a model that generalizes to any new re-id dataset without the need for collecting any training data for model fine-tuning, thus making a deep re-id model truly scalable. Extensive experiments on five benchmarks show that our model outperforms the state-of-the-art models, often significantly. In particular, the features learned on Market-1501 can achieve a Rank-1 accuracy of 68.67% on VIPeR without any model fine-tuning, beating almost all existing models fine-tuned on the dataset.

0
5
下载
预览

In this paper, we propose a new long video dataset (called Track Long and Prosper - TLP) and benchmark for visual object tracking. The dataset consists of 50 videos from real world scenarios, encompassing a duration of over 400 minutes (676K frames), making it more than 20 folds larger in average duration per sequence and more than 8 folds larger in terms of total covered duration, as compared to existing generic datasets for visual tracking. The proposed dataset paves a way to suitably assess long term tracking performance and possibly train better deep learning architectures (avoiding/reducing augmentation, which may not reflect realistic real world behavior). We benchmark the dataset on 17 state of the art trackers and rank them according to tracking accuracy and run time speeds. We further categorize the test sequences with different attributes and present a thorough quantitative and qualitative evaluation. Our most interesting observations are (a) existing short sequence benchmarks fail to bring out the inherent differences in tracking algorithms which widen up while tracking on long sequences and (b) the accuracy of most trackers abruptly drops on challenging long sequences, suggesting the potential need of research efforts in the direction of long term tracking.

0
7
下载
预览
小贴士
相关论文
Ermei Cao,Difeng Wang,Jiacheng Huang,Wei Hu
5+阅读 · 2020年2月15日
Adversarial Metric Attack for Person Re-identification
Song Bai,Yingwei Li,Yuyin Zhou,Qizhu Li,Philip H. S. Torr
3+阅读 · 2019年1月30日
Omni-directional Feature Learning for Person Re-identification
Di Wu,Hong-Wei Yang,De-Shuang Huang
3+阅读 · 2018年12月13日
Jing Xu,Rui Zhao,Feng Zhu,Huaming Wang,Wanli Ouyang
8+阅读 · 2018年5月16日
Gunnar A. Sigurdsson,Abhinav Gupta,Cordelia Schmid,Ali Farhadi,Karteek Alahari
4+阅读 · 2018年4月30日
Zhun Zhong,Liang Zheng,Zhedong Zheng,Shaozi Li,Yi Yang
3+阅读 · 2018年4月10日
Zhanxiang Feng,Jianhuang Lai,Xiaohua Xie
7+阅读 · 2018年3月30日
Ju Dai,Pingping Zhang,Huchuan Lu,Hongyu Wang
5+阅读 · 2018年2月22日
Xuelin Qian,Yanwei Fu,Wenxuan Wang,Tao Xiang,Yang Wu,Yu-Gang Jiang,Xiangyang Xue
5+阅读 · 2018年2月13日
Abhinav Moudgil,Vineet Gandhi
7+阅读 · 2017年12月28日
相关VIP内容
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
7+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
12+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
29+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
10+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年10月16日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
3+阅读 · 2018年4月15日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top