Optical wireless satellite networks (OWSNs) can provide lower latency data communications compared to optical fiber terrestrial networks (OFTNs). The crossover function enables to calculate the crossover distance for an OWSN and an OFTN. If the distance between two points on Earth is greater than the crossover distance, then switching or crossing over from the OFTN to the OWSN results in lower latency for data communications between these points. In this work, we extend the previously proposed crossover function for a scenario such that intermediate satellites (or hops) are incorporated between ingress and egress satellites in the OWSN for a more realistic calculation of the crossover distance in this scenario. We consider different OWSNs with different satellite altitudes and different OFTNs with different optical fiber refractive indexes, and we study the effect of the number of hops on the crossover distance and length of a laser inter-satellite link (LISL). It is observed from the numerical results that the crossover distance increases with an increase in the number of hops, and this increase is higher at higher satellite altitudes in OWSNs and lower refractive indexes in OFTNs. Furthermore, an inverse relationship between the crossover distance and length of a LISL is observed. With an increase in the number of hops, the length of a LISL decreases as opposed to the crossover distance.


翻译:与光纤地面网络相比,光学无线卫星网络(OWSNS)可以提供较低的潜伏数据通信。交叉功能能够计算OWSN和OFTN的跨度距离。如果地球两个点之间的距离大于交叉距离,那么从OFTN到OWSN的转接或跨过就会降低这些点之间数据通信的潜伏时间。在这项工作中,我们扩大了先前提议的跨度功能,这样一种假设情景是,在OWSN卫星中,跨度卫星(或跳)被并入OFSN卫星,以便更现实地计算这一情景中的跨度距离。我们考虑的是,不同卫星高度和不同光纤反光纤指数的离子网和不同TNTN,我们研究跳数对激光卫星之间跨度距离和长度的影响。从数字结果看,跨度的距离增加随着跳线数的增加,在OWSNSN的较高卫星高度和低反向跨度距离距离的跨度上增加。在LSLLL的跨度和跨程中观察到,跨度指数的跨度关系是跨度的递增。LSLSLSLSL。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关VIP内容
专知会员服务
39+阅读 · 2020年9月6日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员