ECG databases are usually highly imbalanced due to the abundance of Normal ECG and scarcity of abnormal cases. As such, deep learning classifiers trained on imbalanced datasets usually perform poorly, especially on minor classes. One solution is to generate realistic synthetic ECG signals using Generative Adversarial Networks (GAN) to augment imbalanced datasets. In this study, we combined conditional GAN with WGAN-GP and developed AC-WGAN-GP in 1D form for the first time to be applied on MIT-BIH Arrhythmia dataset. We investigated the impact of data augmentation on arrhythmia classification. We employed two models for ECG generation: (i) unconditional GAN; Wasserstein GAN with gradient penalty (WGAN-GP) is trained on each class individually; (ii) conditional GAN; one Auxiliary Classifier WGAN-GP (AC-WGAN-GP) model is trained on all classes and then used to generate synthetic beats in all classes. Two scenarios are defined for each case: (a) unscreened; all the generated synthetic beats were used, and (b) screened; only a portion of generated beats are selected and used, based on their Dynamic Time Warping (DTW) distance to a designated template. A state-of-the-art ResNet classifier (EcgResNet34) is trained on each of the augmented datasets and the performance metrics (precision/recall/F1-Score micro- and macro-averaged, confusion matrices, multiclass precision-recall curves) were compared with those of the unaugmented imbalanced case. We also used a simple metric Net Improvement. All the three metrics show consistently that net improvement (total and minor-class), unconditional GAN with raw generated data (not screened) creates the best improvements.


翻译:ECG数据库通常由于正常ECG的丰富和异常案例稀少而高度失衡。因此,在不平衡数据集方面受过训练的深层次学习分类师通常表现不佳,特别是在小类中。一个解决办法是利用General Aversarial Networks(GAN)生成现实的合成ECG信号,用General Aversarial Nets(GAN)来增加不平衡的数据集。在这项研究中,我们首次将有条件的GAN与WGAN-GP(WGAN-GP)组合起来,并开发了1D格式的AC-WGAN-GP(AC-WGAN-GP)模型,用于MIT-BIH Arrythmiam 数据集。我们调查了数据扩增数据对心律分类的影响。我们为ECG生成了两种模型:(一)无条件的GAN;瓦瑟斯坦GAN-GAN(WGAN-GP) 以所有类别为单位,然后用于所有类别中进行合成的改进。两种假设是:(a)未筛选的内压-内压-内压-内流数据,使用所有已制作的内压-内压-内流数据。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Survey on Data Augmentation for Text Classification
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员