Deep neural operators can learn nonlinear mappings between infinite-dimensional function spaces via deep neural networks. As promising surrogate solvers of partial differential equations (PDEs) for real-time prediction, deep neural operators such as deep operator networks (DeepONets) provide a new simulation paradigm in science and engineering. Pure data-driven neural operators and deep learning models, in general, are usually limited to interpolation scenarios, where new predictions utilize inputs within the support of the training set. However, in the inference stage of real-world applications, the input may lie outside the support, i.e., extrapolation is required, which may result to large errors and unavoidable failure of deep learning models. Here, we address this challenge of extrapolation for deep neural operators. First, we systematically investigate the extrapolation behavior of DeepONets by quantifying the extrapolation complexity via the 2-Wasserstein distance between two function spaces and propose a new behavior of bias-variance trade-off for extrapolation with respect to model capacity. Subsequently, we develop a complete workflow, including extrapolation determination, and we propose five reliable learning methods that guarantee a safe prediction under extrapolation by requiring additional information -- the governing PDEs of the system or sparse new observations. The proposed methods are based on either fine-tuning a pre-trained DeepONet or multifidelity learning. We demonstrate the effectiveness of the proposed framework for various types of parametric PDEs. Our systematic comparisons provide practical guidelines for selecting a proper extrapolation method depending on the available information, desired accuracy, and required inference speed.
翻译:深心神经操作员可以通过深心神经网络学习无限功能空间之间的非线性绘图。 深心神经操作员可以通过深心神经网络学习无限功能空间之间的非线性绘图。 作为实时预测部分差异方程式(PDE)的有希望的替代解析器,深心神经操作员(DeepONets)等深心操作员可以提供一个新的科学和工程模拟范例。 纯数据驱动神经操作员和深学习模型通常局限于内插情景,其中新的预测利用了支持培训组合内的投入。 但是,在现实世界应用的推论阶段,投入可能处于支持之外,即需要外推推法,这可能导致深度学习模型的巨大错误和不可避免的失败。 此处,我们应对深心神经操作员的外推法挑战。 首先,我们系统地调查DeepONets的外推法,通过两个功能空间之间的2-Wassersteinstein距离量化外推法的复杂性,并提出一种与模型能力有关的偏差性交易的新行为。 随后,我们开发一个完整的工作流程,包括外推法外推法性判断, 提供基于安全性判断法性判断方法的多重预测方法。 我们提议以学习一种可靠的方法。 我们提议, 选择一种基于精确分析方法, 选择一种更精确的计算方法。