Multi-modal multi-objective optimization problems (MMMOPs) have multiple subsets within the Pareto-optimal Set, each independently mapping to the same Pareto-Front. Prevalent multi-objective evolutionary algorithms are not purely designed to search for multiple solution subsets, whereas, algorithms designed for MMMOPs demonstrate degraded performance in the objective space. This motivates the design of better algorithms for addressing MMMOPs. The present work identifies the crowding illusion problem originating from using crowding distance globally over the entire decision space. Subsequently, an evolutionary framework, called graph Laplacian based Optimization using Reference vector assisted Decomposition (LORD), is proposed, which uses decomposition in both objective and decision space for dealing with MMMOPs. Its filtering step is further extended to present LORD-II algorithm, which demonstrates its dynamics on multi-modal many-objective problems. The efficacy of the frameworks are established by comparing their performance on test instances from the CEC 2019 multi-modal multi-objective test suite and polygon problems with the state-of-the-art algorithms for MMMOPs and other multi- and many-objective evolutionary algorithms. The manuscript is concluded mentioning the limitations of the proposed frameworks and future directions to design still better algorithms for MMMOPs. The source code is available at https://worksupplements.droppages.com/lord.


翻译:多式多目标优化问题(MMMOPs)在Pareto-optimal Set(Pareto-optimal Set)中包含多个子集,每个子集都独立地绘制到同一个Pareto-Front。 推荐的Pretarent多目标进化算法并非纯粹为了寻找多个解决方案子集而设计的,而为MMMOPs设计的算法显示在客观空间中的性能退化。这促使设计更好的算法来解决MMMOs问题。目前的工作查明了由于在整个决策空间使用全球挤压距离而产生的众人错觉问题。随后,提出了一个进化框架,称为“基于 Laplacian 的优化图 ”,使用参考矢量辅助的解析(LORD) 。 提议在目标和决策空间中使用解析空间来与 MMMOPs进行交易。 它的过滤步骤进一步扩展到目前的 耶和華-II 算法,它显示了在多式多重目标问题上的动态。 框架的功效是通过将其测试实例与CEC 2019多式多式多式测试套和多式测试套和多式问题和多式问题与州-Articolal-commoval- dal- dals views movcals mals malsmalsmalsmaxals malsmas maxmas mas mas mas mas mas mas mas mas mas maxals maxals mas maxlislalmaxlisquermas laxlislislislismad mas laxlds mas maxldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldald

0
下载
关闭预览

相关内容

【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关VIP内容
相关资讯
revelation of MONet
CreateAMind
5+阅读 · 2019年6月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
一文读懂依存句法分析
AINLP
16+阅读 · 2019年4月28日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员