Planning collision-free paths for multi-robot systems (MRS) is a challenging problem because of the safety and efficiency constraints required for real-world solutions. Even though coupled path planning approaches provide optimal collision-free paths for each agent of the MRS, they search the composite space of all the agents and therefore, suffer from exponential increase in computation with the number of robots. On the other hand, prioritized approaches provide a practical solution to applications with large number of robots, especially when path computation time and collision avoidance take precedence over guaranteed globally optimal solution. While most centrally-planned algorithms use static prioritization, a dynamic prioritization algorithm, PD*, is proposed that employs a novel metric, called freedom index, to decide the priority order of the robots at each time step. This allows the PD* algorithm to simultaneously plan the next step for all robots while ensuring collision-free operation in obstacle ridden environments. Extensive simulations were performed to test and compare the performance of the proposed PD* scheme with other state-of-the-art algorithms. It was found that PD* improves upon the computational time by 25% while providing solutions of similar path lengths. Increase in efficiency was particularly prominent in scenarios with large number of robots and/or higher obstacle densities, where the probability of collisions is higher, suggesting the suitability of PD* in solving such problems.


翻译:多机器人系统(MRS)的无碰撞规划路径是一个具有挑战性的问题,因为现实世界解决方案需要安全和效率方面的限制。尽管混合路径规划方法为MRS的每个代理提供最佳的无碰撞路径,但它们搜索所有代理器的复合空间,因此,在计算机器人数量时会遇到指数式的增加。另一方面,优先排序方法为大量机器人的应用提供了切实可行的解决办法,特别是当路径计算时间和避免碰撞优先于全球最佳保障解决方案时。大多数中央计划算法使用静态排序,动态排序算法PD* 提议采用新的衡量标准,称为自由指数,以决定每个时间步骤的机器人的优先顺序。这使PD* 算法能够同时为所有机器人规划下一个步骤,同时确保在充满障碍的环境中不发生碰撞操作。进行了广泛的模拟,以测试和比较拟议的PD* 计划与其他最先进的算法的绩效。发现,PD* 在计算时间的计算时间上改进了25%的动态排序算法,称为自由指数,以决定机器人每个步骤的优先顺序。这让PD* 能够同时同时规划所有机器人的下一个步骤,同时确保在高的概率上更精确性。提高的概率。 提高的概率 。

0
下载
关闭预览

相关内容

【Manning新书】现代Java实战,592页pdf
专知会员服务
98+阅读 · 2020年5月22日
深度强化学习策略梯度教程,53页ppt
专知会员服务
177+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
已删除
将门创投
4+阅读 · 2018年11月6日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关资讯
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
已删除
将门创投
4+阅读 · 2018年11月6日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员