Many real-world IoT systems, which include a variety of internet-connected sensory devices, produce substantial amounts of multivariate time series data. Meanwhile, vital IoT infrastructures like smart power grids and water distribution networks are frequently targeted by cyber-attacks, making anomaly detection an important study topic. Modeling such relatedness is, nevertheless, unavoidable for any efficient and effective anomaly detection system, given the intricate topological and nonlinear connections that are originally unknown among sensors. Furthermore, detecting anomalies in multivariate time series is difficult due to their temporal dependency and stochasticity. This paper presented GTA, a new framework for multivariate time series anomaly detection that involves automatically learning a graph structure, graph convolution, and modeling temporal dependency using a Transformer-based architecture. The connection learning policy, which is based on the Gumbel-softmax sampling approach to learn bi-directed links among sensors directly, is at the heart of learning graph structure. To describe the anomaly information flow between network nodes, we introduced a new graph convolution called Influence Propagation convolution. In addition, to tackle the quadratic complexity barrier, we suggested a multi-branch attention mechanism to replace the original multi-head self-attention method. Extensive experiments on four publicly available anomaly detection benchmarks further demonstrate the superiority of our approach over alternative state-of-the-arts.
翻译:许多真实世界的IOT系统,其中包括各种互联网连接的感官装置,产生大量多变时间序列数据。与此同时,智能电网和水分配网络等重要的IOT基础设施经常成为网络攻击的目标,使异常点探测成为一个重要的研究课题。鉴于传感器之间最初未知的复杂地貌和非线性连接,建模这种关联对于任何高效和有效的异常探测系统来说都是不可避免的。此外,多变时间序列中的异常点由于其时间依赖性和随机性而难以发现。本文介绍了一个新的多变时间序列异常点探测新框架GTA,这个框架涉及自动学习图表结构、图集和以变异器为基础的结构模拟时间依赖性。基于Gumbel-软式取样法的连接学习政策是直接学习传感器之间双向联系的核心。为了描述网络节点之间的异常信息流动,我们引入了一个新的图解变异性变异模式,称为“变异性变换”。此外,为了自动学习图表结构的图形结构结构,我们建议用原变异性变现式的多变异性模型取代了现有多变异性研究模式,我们现有的变异性变异性变异性研究模式,我们建议用原始变异性变异性研究模式来取代了可变异性变现式的多变异性变异性研究的多重式的多式模型式模型式的多重式的多重式的自我定位方法。