Reasoning at multiple levels of temporal abstraction is one of the key attributes of intelligence. In reinforcement learning, this is often modeled through temporally extended courses of actions called options. Options allow agents to make predictions and to operate at different levels of abstraction within an environment. Nevertheless, approaches based on the options framework often start with the assumption that a reasonable set of options is known beforehand. When this is not the case, there are no definitive answers for which options one should consider. In this paper, we argue that the successor representation (SR), which encodes states based on the pattern of state visitation that follows them, can be seen as a natural substrate for the discovery and use of temporal abstractions. To support our claim, we take a big picture view of recent results, showing how the SR can be used to discover options that facilitate either temporally-extended exploration or planning. We cast these results as instantiations of a general framework for option discovery in which the agent's representation is used to identify useful options, which are then used to further improve its representation. This results in a virtuous, never-ending, cycle in which both the representation and the options are constantly refined based on each other. Beyond option discovery itself, we discuss how the SR allows us to augment a set of options into a combinatorially large counterpart without additional learning. This is achieved through the combination of previously learned options. Our empirical evaluation focuses on options discovered for temporally-extended exploration and on the use of the SR to combine them. The results of our experiments shed light on design decisions involved in the definition of options and demonstrate the synergy of different methods based on the SR, such as eigenoptions and the option keyboard.


翻译:以多种程度的时间抽象理论为根据,这是情报的关键特征之一。在强化学习中,这通常通过时间上延伸的行动模式来模拟,称为选项。选项允许代理商在环境中作出预测并在不同层次的抽象环境中运作。然而,基于选项框架的方法往往以假设事先知道一套合理的备选方案为起点;如果情况并非如此,则没有确切的答案可供考虑。在本文中,我们争辩说,后续代表(SR)根据国家访问模式编码,并随后用来进一步改进其代表性,可以被视为发现和使用时间抽象的实验的自然基数。为了支持我们的要求,我们从大图中查看最近的结果,显示基于选项的选项,如何利用这些选项来发现有助于时间延伸的探索或规划。我们将这些结果作为发现备选方案的一般框架的即使用代理人的代表代表代表用来确定有用的选项,然后用来进一步改进其代表性。这一结果在良性、永不拖延的周期中可以发现并使用时间上抽象抽象的周期,从而在时间上将我们选择的周期性选择进行循环,然后将我们选择的更深层次的选项作为我们不断改进的选项,然后将我们不断改进的排序。

1
下载
关闭预览

相关内容

图像超分辨率(SR)是提高图像分辨率的一类重要的图像处理技术以及计算机视觉中的视频。
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
4+阅读 · 2020年3月19日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Inferred successor maps for better transfer learning
Arxiv
8+阅读 · 2018年7月12日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员