Relation extraction is an important but challenging task that aims to extract all hidden relational facts from the text. With the development of deep language models, relation extraction methods have achieved good performance on various benchmarks. However, we observe two shortcomings of previous methods: first, there is no unified framework that works well under various relation extraction settings; second, effectively utilizing external knowledge as background information is absent. In this work, we propose a knowledge-enhanced generative model to mitigate these two issues. Our generative model is a unified framework to sequentially generate relational triplets under various relation extraction settings and explicitly utilizes relevant knowledge from Knowledge Graph (KG) to resolve ambiguities. Our model achieves superior performance on multiple benchmarks and settings, including WebNLG, NYT10, and TACRED.
翻译:关系提取是一项重要但具有挑战性的任务,目的是从文本中提取所有隐藏的关联事实。随着深层语言模型的开发,关系提取方法在各种基准上取得了良好的业绩。然而,我们观察到以往方法的两个缺点:第一,没有在各种关联提取设置下行之有效的统一框架;第二,在缺乏背景资料的情况下有效利用外部知识。在这项工作中,我们提出了一个知识强化的基因化模型,以缓解这两个问题。我们的基因化模型是一个在各种关联提取设置下相继生成关系三重物的统一框架,并明确利用知识图表(KG)的相关知识解决模糊问题。我们的模型在多个基准和设置上取得了优异的绩效,包括WebNLG、NYT10和TACRED。