This paper proposes an extremely lightweight phone-based transducer model with a tiny decoding graph on edge devices. First, a phone synchronous decoding (PSD) algorithm based on blank label skipping is first used to speed up the transducer decoding process. Then, to decrease the deletion errors introduced by the high blank score, a blank label deweighting approach is proposed. To reduce parameters and computation, deep feedforward sequential memory network (DFSMN) layers are used in the transducer encoder, and a CNN-based stateless predictor is adopted. SVD technology compresses the model further. WFST-based decoding graph takes the context-independent (CI) phone posteriors as input and allows us to flexibly bias user-specific information. Finally, with only 0.9M parameters after SVD, our system could give a relative 9.1% - 20.5% improvement compared with a bigger conventional hybrid system on edge devices.
翻译:本文建议使用极轻轻的手机转换器模型, 边端设备上有一个微小解码图。 首先, 以空白标签跳过为基础的电话同步解码算法( PSD) 将首先用于加速转换器解码过程。 然后, 为了减少高空分引入的删除错误, 将建议采用空白标签脱包法。 为了减少参数和计算, 在传输器编码器中使用了深传相继存储网络( DFSMN) 层, 并采用了有线电视新闻网的无国籍预测器 。 SVD 技术将模型进一步压缩。 基于 WFST 的解码图形将基于上下文的( CI) 的电话映像仪作为输入, 并允许我们使用灵活偏差的用户专用信息。 最后, 如果在 SVD 之后只有 0. 9M 参数, 我们的系统可以提供相对9.1%-20.5%的改进率, 与边端设备上较大的常规混合系统相比, 。