In today's digital world, social media plays a significant role in facilitating communication and content sharing. However, the exponential rise in user-generated content has led to challenges in maintaining a respectful online environment. In some cases, users have taken advantage of anonymity in order to use harmful language, which can negatively affect the user experience and pose serious social problems. Recognizing the limitations of manual moderation, automatic detection systems have been developed to tackle this problem. Nevertheless, several obstacles persist, including the absence of a universal definition for harmful language, inadequate datasets across languages, the need for detailed annotation guideline, and most importantly, a comprehensive framework. This study aims to address these challenges by introducing, for the first time, a detailed framework adaptable to any language. This framework encompasses various aspects of harmful language detection. A key component of the framework is the development of a general and detailed annotation guideline. Additionally, the integration of sentiment analysis represents a novel approach to enhancing harmful language detection. Also, a definition of harmful language based on the review of different related concepts is presented. To demonstrate the effectiveness of the proposed framework, its implementation in a challenging low-resource language is conducted. We collected a Persian dataset and applied the annotation guideline for harmful detection and sentiment analysis. Next, we present baseline experiments utilizing machine and deep learning methods to set benchmarks. Results prove the framework's high performance, achieving an accuracy of 99.4% in offensive language detection and 66.2% in sentiment analysis.
翻译:暂无翻译