Most recently proposed approaches in dialogue state tracking (DST) leverage the context and the last dialogue states to track current dialogue states, which are often slot-value pairs. Although the context contains the complete dialogue information, the information is usually indirect and even requires reasoning to obtain. The information in the lastly predicted dialogue states is direct, but when there is a prediction error, the dialogue information from this source will be incomplete or erroneous. In this paper, we propose the Dialogue State Tracking with Multi-Level Fusion of Predicted Dialogue States and Conversations network (FPDSC). This model extracts information of each dialogue turn by modeling interactions among each turn utterance, the corresponding last dialogue states, and dialogue slots. Then the representation of each dialogue turn is aggregated by a hierarchical structure to form the passage information, which is utilized in the current turn of DST. Experimental results validate the effectiveness of the fusion network with 55.03% and 59.07% joint accuracy on MultiWOZ 2.0 and MultiWOZ 2.1 datasets, which reaches the state-of-the-art performance. Furthermore, we conduct the deleted-value and related-slot experiments on MultiWOZ 2.1 to evaluate our model.
翻译:最近提出的对话状态跟踪方法(DST)利用上下文和最后对话状态来跟踪当前对话状态,这些状态往往是时值对等的。虽然上下文包含完整的对话信息,但信息通常是间接的,甚至需要推理才能获取。最后预测的对话状态中的信息是直接的,但当出现预测错误时,来自该源的对话信息将是不完整或错误的。在本文件中,我们提议“对话状态跟踪,预测对话国和对话网络(FPDSC)的多层次融合” 。这个模型通过模拟每个转弯话、对应的最后对话状态和对话位置之间的相互作用,来提取每次对话转转弯的信息。然后,每次对话的表述都由等级结构汇总,形成行距信息,在DST的当前转弯中使用。实验结果证实了多WOZ 2.0 和多WOZ 2. 0 和多WOZ 2. 1 数据集的联合精度的有效性,这两个数据集达到了我们最先进的性能。此外,我们用删除值和相关的数据实验模式来评估多WOZ 2.1 。