Combining multiple sensors enables a robot to maximize its perceptual awareness of environments and enhance its robustness to external disturbance, crucial to robotic navigation. This paper proposes the FusionPortable benchmark, a complete multi-sensor dataset with a diverse set of sequences for mobile robots. This paper presents three contributions. We first advance a portable and versatile multi-sensor suite that offers rich sensory measurements: 10Hz LiDAR point clouds, 20Hz stereo frame images, high-rate and asynchronous events from stereo event cameras, 200Hz inertial readings from an IMU, and 10Hz GPS signal. Sensors are already temporally synchronized in hardware. This device is lightweight, self-contained, and has plug-and-play support for mobile robots. Second, we construct a dataset by collecting 17 sequences that cover a variety of environments on the campus by exploiting multiple robot platforms for data collection. Some sequences are challenging to existing SLAM algorithms. Third, we provide ground truth for the decouple localization and mapping performance evaluation. We additionally evaluate state-of-the-art SLAM approaches and identify their limitations. The dataset, consisting of raw sensor easurements, ground truth, calibration data, and evaluated algorithms, will be released: https://ram-lab.com/file/site/multi-sensor-dataset.
翻译:组合多个传感器使机器人能够最大限度地提高对环境的认识,增强对外部扰动的稳健性,这对机器人导航至关重要。本文件提议了“Fusion可移动基准”,这是一个完整的多传感器数据集,为移动机器人提供一套不同的序列。本文提出三项贡献。我们首先推出一个便携式和多功能的多传感器套件,提供丰富的感官测量:10Hz LiDAR点云、20Hz立体框架图像、立体事件摄像机的高率和不同步事件、IMU的200Hz惯性读数和10Hz全球定位系统信号。传感器已经在硬件中实现时间同步。这个设备是轻量级的、自足的,并为移动机器人提供插机支持。第二,我们通过利用多个机器人平台收集数据,建立覆盖校园内各种环境的17个数据集。有些序列对现有的 SLM 算法具有挑战性。第三,我们为分界定位和绘图性能评估提供了地面真相。我们进一步评估了州- 州- 州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州