The transfer of facial expressions from people to 3D face models is a classic computer graphics problem. In this paper, we present a novel, learning-based approach to transferring facial expressions and head movements from images and videos to a biomechanical model of the face-head-neck complex. Leveraging the Facial Action Coding System (FACS) as an intermediate representation of the expression space, we train a deep neural network to take in FACS Action Units (AUs) and output suitable facial muscle and jaw activation signals for the musculoskeletal model. Through biomechanical simulation, the activations deform the facial soft tissues, thereby transferring the expression to the model. Our approach has advantages over previous approaches. First, the facial expressions are anatomically consistent as our biomechanical model emulates the relevant anatomy of the face, head, and neck. Second, by training the neural network using data generated from the biomechanical model itself, we eliminate the manual effort of data collection for expression transfer. The success of our approach is demonstrated through experiments involving the transfer onto our face-head-neck model of facial expressions and head poses from a range of facial images and videos.


翻译:将面部表情从人向3D面部模型转移是一个典型的计算机图形问题。 在本文中,我们展示了一种基于学习的新颖方法,将面部表情和头部运动从图像和视频向面部颈部综合体的生物机械模型转移,将脸部颈部颈部颈部颈部颈部颈部颈部颈部颈部颈部颈部颈部部骨骼模型作为中间表达空间的中间表示法。我们培训了一个深神经网络,以在 FACS 行动单位(AUS)中接受,并为肌肉骨骼模型输出出合适的面部肌肉和下巴激活信号。通过生物机械模拟,激活面部软组织骨部组织形部骨部骨部骨部骨部骨部骨部骨部骨部骨部骨部骨部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部颈部骨部骨部骨部部骨部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部部的实验实验。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉领域顶会CVPR 2018 接受论文列表
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
Arxiv
5+阅读 · 2018年12月18日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉领域顶会CVPR 2018 接受论文列表
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员