Deep learning has achieved overwhelming success, spanning from discriminative models to generative models. In particular, deep generative models have facilitated a new level of performance in a myriad of areas, ranging from media manipulation to sanitized dataset generation. Despite the great success, the potential risks of privacy breach caused by generative models have not been analyzed systematically. In this paper, we focus on membership inference attack against deep generative models that reveals information about the training data used for victim models. Specifically, we present the first taxonomy of membership inference attacks, encompassing not only existing attacks but also our novel ones. In addition, we propose the first generic attack model that can be instantiated in a large range of settings and is applicable to various kinds of deep generative models. Moreover, we provide a theoretically grounded attack calibration technique, which consistently boosts the attack performance in all cases, across different attack settings, data modalities, and training configurations. We complement the systematic analysis of attack performance by a comprehensive experimental study, that investigates the effectiveness of various attacks w.r.t. model type and training configurations, over three diverse application scenarios (i.e., images, medical data, and location data).


翻译:深层次的学习取得了巨大的成功,从歧视模式到基因模型,从歧视模式到基因模型,特别是深层次的基因模型为从媒体操纵到净化数据集生成等众多领域的新水平的绩效提供了便利。尽管取得了巨大成功,但基因模型造成的侵犯隐私的潜在风险还没有系统地分析。在本文中,我们侧重于对揭示受害者模型培训数据信息的深层次基因模型的会员推论攻击。具体地说,我们介绍了成员推断攻击的第一个分类,不仅包括现有的攻击,也包括我们的新颖的攻击。此外,我们提出了第一个可以在大范围环境中即燃的通用攻击模型,并适用于各种深层次基因模型。此外,我们提供了一种理论上的、有根据的攻击校准技术,这种技术不断促进各种袭击的性能,跨越不同的攻击环境、数据模式和培训配置。我们通过全面实验研究来补充对攻击性表现的系统分析,该研究调查了各种攻击(例如,数据、数据、数据、和培训)在三种不同应用情景(即,地点)下的各种攻击的效果。

0
下载
关闭预览

相关内容

分类学是分类的实践和科学。Wikipedia类别说明了一种分类法,可以通过自动方式提取Wikipedia类别的完整分类法。截至2009年,已经证明,可以使用人工构建的分类法(例如像WordNet这样的计算词典的分类法)来改进和重组Wikipedia类别分类法。 从广义上讲,分类法还适用于除父子层次结构以外的关系方案,例如网络结构。然后分类法可能包括有多父母的单身孩子,例如,“汽车”可能与父母双方一起出现“车辆”和“钢结构”;但是对某些人而言,这仅意味着“汽车”是几种不同分类法的一部分。分类法也可能只是将事物组织成组,或者是按字母顺序排列的列表;但是在这里,术语词汇更合适。在知识管理中的当前用法中,分类法被认为比本体论窄,因为本体论应用了各种各样的关系类型。 在数学上,分层分类法是给定对象集的分类树结构。该结构的顶部是适用于所有对象的单个分类,即根节点。此根下的节点是更具体的分类,适用于总分类对象集的子集。推理的进展从一般到更具体。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员