Multi-agent reinforcement learning (MARL) has been applied and shown great potential in multi-intersections traffic signal control, where multiple agents, one for each intersection, must cooperate together to optimize traffic flow. To encourage global cooperation, previous work partitions the traffic network into several regions and learns policies for agents in a feudal structure. However, static network partition fails to adapt to dynamic traffic flow, which will changes frequently over time. To address this, we propose a novel feudal MARL approach with adaptive network partition. Specifically, we first partition the network into several regions according to the traffic flow. To do this, we propose two approaches: one is directly to use graph neural network (GNN) to generate the network partition, and the other is to use Monte-Carlo tree search (MCTS) to find the best partition with criteria computed by GNN. Then, we design a variant of Qmix using GNN to handle various dimensions of input, given by the dynamic network partition. Finally, we use a feudal hierarchy to manage agents in each partition and promote global cooperation. By doing so, agents are able to adapt to the traffic flow as required in practice. We empirically evaluate our method both in a synthetic traffic grid and real-world traffic networks of three cities, widely used in the literature. Our experimental results confirm that our method can achieve better performance, in terms of average travel time and queue length, than several leading methods for traffic signal control.
翻译:多试剂强化学习(MARL)已经应用,并展示了多路间交通信号控制的巨大潜力,在多路间交通信号控制中,多个代理(每个交叉路口各一个)必须合作优化交通流量。为了鼓励全球合作,以往的工作将交通网络分成几个区域,并学习封建结构中代理政策。然而,静态网络分割无法适应动态交通流,而这种流动将随着时间变化而经常变化。为了解决这个问题,我们提出了一个新的封建MARL方法,并采用适应性网络分割。具体地说,我们首先根据交通流量将网络分为几个区域。为此,我们建议了两种方法:一种是直接使用图形神经网络(GNN)来生成网络分隔,另一种是使用蒙特-卡洛树搜索(MCTS)来寻找以封建结构结构结构结构中代理代理的交通网络的最佳分隔。然后,我们用GNNN(G)来设计一个变体来处理不同层面的投入。我们使用动态网络分割的封建等级来管理每个分区的代理,并促进全球合作。为此,我们建议两种方法是能够适应交通流量流动流,在合成网络中所需的移动流,我们在实验性网络中采用一种方法。我们所使用的一种方法,我们所使用的方法可以改进我们的平均交通运行方法。我们所使用的一种方法。我们所使用的一种方法可以用来在实验性能方法。我们所使用的一种方法,用于我们所使用的一种实验性交通运行。